Abstract:
Vorhofflimmern ist die verbreitetste Herzrhythmusstörung unter Erwachsenen und geht mit einem erhöhten Risiko kardiovaskulärer Krankheiten und plötzlichem Herztod einher. Im Jahr 2020 hatten schätzungsweise mehr als 50 Millionen Personen weltweit Vorhofflimmern und es wird erwartet, dass sich seine Prävalenz bis 2060 verdoppeln wird. Trotz beachtlicher Fortschritte bezüglich Diagnose und Behandlung von Vorhofflimmern bleiben therapeutische Ansätze unzureichend, was mit dem One-Size-Fits-All-Ansatz erklärt werden kann, welcher die Variabilität von Patient*innen nicht berücksichtigt. ... mehrIn dem Zusammenhang sind patient*innenspezifische Computermodelle des Vorhofs, auch Digitale Zwillinge genannt, nützlich, um das Verständnis der Pathophysiologie des Vorhofflimmerns zu verbessern und um sich der dadurch immer größer werdenden Belastung der Gesundheitssysteme zu widmen. Das Ziel atrialer Digitaler Zwillinge ist es, unterschiedliche Behandlungsstrategien zu evaluieren und die für die Patient*innen passendste zu bestimmen.
Personalisierung bedeutet, Patient*innendaten, beispielsweise anatomische, funktionelle und substratspezifische, in Modellparameter zu integrieren, um die physikalischen Eigenschaften der Herzzellen, des Herzgewebes oder des gesamten Herzens der Patient*innen widerzuspiegeln. Aktuell herrscht bezüglich der Methodik, Digitale Zwillinge zu konstruieren, um die Behandlung von Vorhofflimmern zu unterstützen, kein Konsens. Es existieren Studien, in denen ausschließlich nichtinvasive, vorprozedurale Daten genutzt werden, wohingegen andere invasive, prozedurale Daten oder eine Kombination beider nutzen. Der Gesamteffekt der Wahl der Input-Daten auf das Verhalten patient*innenspezifischer Modelle ist aktuell noch nicht bekannt.
In dieser Arbeit wurden die Anfälligkeit für Herzrhythmusstöungen und die Zykluslänge von Tachykardien quantifiziert, um ebendieses zu untersuchen. Die Anfälligkeit wurde als Verhältnis zwischen der Anzahl induzierender und stimulierender Punkte auf der Vorhofoberläche definiert. Die Zykluslänge einer Tachykardie wurde an der Stimulationsstelle gemessen und als durchschnittliche Zeitraum zwischen den d$V/$d$t$-Peaks des induzierten Reentries definiert. Im Speziellen wurde der Effekt drei unterschiedlicher klinischer Datentypen untersucht: (i) anatomische Personalisierung durch einen Vergleich monoatrialer und biatrialer Modelle, (ii) funktionelle Personalisierung durch einen Vergleich von Modellen mit personalisierter Refraktärzeit und unpersonalisierten Modellen sowie (iii) funktionelle und substratbezogene Personalisierung durch einen Vergleich vorprozedualer und prozedualer Daten. Schließlich wurde eine größere Kohorte von 22 patient*innenspezifischen biatrialen Computermodellen entwickelt, um ein maschinelles Lernklassifizierungsmodell zur Vorhersage der Anfälligkeit für Arrhythmien zu trainieren und die Bedeutung personalisierter Merkmale für die Vorhersage zu bewerten.
Die Ergebnisse dieser Arbeit zeigen, dass die Wahl der Input-Daten das Verhalten der patient*innenspezifischen Computermodelle beeinflusst. Der rechte Vorhof spielt eine wichtige Rolle bei der Induzierung und Aufrechterhaltung von Arrhythmien, weshalb der Gebrauch biatrialer Modelle empfehlenswert erscheint. Die Personalisierung der effektiven Refraktärzeit hat einen größeren Einfluss auf die Reentry-Dynamik als auf den Gesamtwert der Anfälligkeit. Die substratspezifische Personalisierung hatte den größten Einfluss auf die Anfälligkeit, weshalb weitere Methoden gebraucht werden, um seine korrekte Repräsentierung zu gewährleisten. Der maschinelle Lernklassifikator kann eine schnelle Alternative darstellen, die den Bedarf an teuren Berechnungen von virtuellen Schrittmacherprotokollen reduziert und so den Übergang zu klinischen Anwendungen erleichtert. Der Gebrauch patient*innenspezifischer Modelle mit hochaufgelöster Anatomie, Funktion und Substrat kann die Entwicklung von Therapieplanungsmethoden für Vorhofflimmern verbessern.
Abstract (englisch):
Atrial fibrillation is the most prevalent cardiac arrhythmia in the adult population associated with an elevated risk of cardiovascular events and sudden cardiac death. In 2020, more than 50 million people worldwide were estimated to have atrial fibrillation, and its prevalence is expected to double by 2060. Despite significant progress in diagnosing and treating atrial fibrillation, current therapies often fail to prevent adverse outcomes due to their one-size-fits-all approach, ignoring patient variability. Patient-specific atrial computer models, also known as atrial digital twins, have emerged to improve our understanding of the pathophysiology of atrial fibrillation and to address the growing public health burden posed by atrial fibrillation today. ... mehrThe vision of atrial digital twins is to serve as a tool supporting the evaluation of different treatment strategies and selecting the most appropriate one to address the specific needs of each patient.
Personalization refers to the process of incorporating patient data, such as anatomical, functional, and substrate-related, into model parameters that reflect specific physical properties of the cardiac cells, tissue, or heart of the individual. Currently, there is no consensus on the methodology for constructing a digital twin to inform atrial fibrillation treatment. Some studies have developed methodologies using only non-invasive pre-procedural data, while others have employed invasive procedural data or a combination of both. The overall effect of the selected input data on the behavior of the patient-specific model is currently unknown.
In this thesis, arrhythmia vulnerability and tachycardia cycle length were quantified to assess the impact of different input data on the behavior of the patient-specific model. Arrhythmia vulnerability was defined as the ratio of the number of inducing points divided by the number of stimulation points on the atrial surface. Tachycardia cycle length was measured at the stimulation location and defined as the average time between peaks of the d$V/$d$t$ of induced reentries. In particular, the effect of three types of clinical data was evaluated: 1) anatomical personalization by comparing monoatrial versus biatrial models, 2) functional personalization by comparing models with personalized refractory period versus non-personalized models, and 3) functional and substrate personalization by comparing pre-procedural versus procedural data. Finally, a larger cohort of 22 patient-specific biatrial computer models was developed to train a machine learning classifier model for predicting arrhythmia vulnerability and evaluating the importance of personalized features on the prediction.
The results of the first project showed that incorporating the right atrium increased the mean vulnerability of the left atrium and revealed new induction points per patient model, which did not induce reentry in the monoatrial model. The right atrium had a substrate state-dependent effect on arrhythmia dynamics.
In the second project, the non-personalized scenario with homogeneous effective refractory period distribution was the least vulnerable to arrhythmia, while the regional personalized scenario was the most vulnerable. Heterogeneities in the form of regions promote unidirectional blocks, thereby increasing vulnerability, while the homogeneous scenario makes it less likely to induce reentry even with a shorter effective refractory period. Incorporating the effective refractory period as a continuous distribution slightly decreased vulnerability compared to the state-of-the-art heterogeneous non-personalized scenario. Increased dispersion of the effective refractory period in personalized scenarios has a greater effect on reentry dynamics than on the absolute value of vulnerability. Tachycardia cycle length of the personalized vs the non-personalized scenarios was significantly slower.
In the third project, total activation times and patterns were markedly different between invasive and non-invasive modalities. Arrhythmia vulnerability was more influenced by the extent of fibrosis than by the activation patterns. Finally, the machine learning classifier achieved a moderate accuracy for the prediction of arrhythmia vulnerability. Fibrosis density measured at 10\,mm from the stimulation points and global conduction velocity were the features showing the highest impact on point inducibility prediction.
The results presented in this thesis provide evidence that the selection of input data affects the behavior of the patient-specific computer model. The right atrium plays an important role in the maintenance and induction of arrhythmia, thus the use of biatrial models seems advisable. Personalization of the effective refractory period has a greater effect on reentry dynamics than on the absolute value of vulnerability. Substrate-related personalization was the feature with the highest influence on vulnerability, therefore, further detection methods are needed to ensure its correct representation. The machine learning classifier may offer a fast alternative reducing the need of expensive computations of virtual pacing protocols, thus aiding the transition to clinical applications. The use of patient-specific models with highly detailed anatomy, function, and substrate may improve the development of tools for therapy planning for atrial fibrillation.