KIT | KIT-Bibliothek | Impressum | Datenschutz

Optimizing bucket-filling strategies for wheel loaders inside a dream environment

Eriksson, Daniel; Ghabcheloo, Reza; Geimer, Marcus 1
1 Institut für Fahrzeugsystemtechnik (FAST), Karlsruher Institut für Technologie (KIT)

Abstract:

Reinforcement Learning (RL) requires many interactions with the environment to converge to an optimal strategy, which makes it unfeasible to apply to wheel loaders and the bucket filling problem without using simulators. However, it is difficult to model the pile dynamics in the simulator because of unknown parameters, which results in poor transferability from the simulation to the real environment. Instead, this paper uses world models, serving as a fast surrogate simulator, creating a dream environment where a reinforcement learning (RL) agent explores and optimizes its bucket-filling behavior. The trained agent is then deployed on a full-size wheel loader without modifications, demonstrating its ability to outperform the previous benchmark controller, which was synthesized using imitation learning. Additionally, the same performance was observed as that of a controller pre-trained with imitation learning and optimized on the test pile using RL.


Verlagsausgabe §
DOI: 10.5445/IR/1000175083
Veröffentlicht am 18.10.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Fahrzeugsystemtechnik (FAST)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 01.12.2024
Sprache Englisch
Identifikator ISSN: 0926-5805, 1872-7891
KITopen-ID: 1000175083
Erschienen in Automation in Construction
Verlag Elsevier
Band 168
Heft Part A
Seiten 105804
Vorab online veröffentlicht am 04.10.2024
Schlagwörter Automatic bucket filling, Wheel loaders, World models, Reinforcement learning, Neural networks
Nachgewiesen in Scopus
Dimensions
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page