KIT | KIT-Bibliothek | Impressum | Datenschutz

Black Box Adversarial Reprogramming for Time Series Feature Classification in Ball Bearings’ Remaining Useful Life Classification

Bott, Alexander 1; Schreyer, Felix 1; Puchta, Alexander 1; Fleischer, Jürgen 1
1 Institut für Produktionstechnik (WBK), Karlsruher Institut für Technologie (KIT)

Abstract:

Standard ML relies on ample data, but limited availability poses challenges. Transfer learning offers a solution by leveraging pre-existing knowledge. Yet many methods require access to the model’s internal aspects, limiting applicability to white box models. To address this, Tsai, Chen and Ho introduced Black Box Adversarial Reprogramming for transfer learning with black box models. While tested primarily in image classification, this paper explores its potential in time series classification, particularly predictive maintenance. We develop an adversarial reprogramming concept tailored to black box time series classifiers. Our study focuses on predicting the Remaining Useful Life of rolling bearings. We construct a comprehensive ML pipeline, encompassing feature engineering and model fine-tuning, and compare results with traditional transfer learning. We investigate the impact of hyperparameters and training parameters on model performance, demonstrating the successful application of Black Box Adversarial Reprogramming to time series data. The method achieved a weighted F1-score of 0.77, although it exhibited significant stochastic fluctuations, with scores ranging from 0.3 to 0.77 due to randomness in gradient estimation.


Verlagsausgabe §
DOI: 10.5445/IR/1000175085
Veröffentlicht am 11.10.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Produktionstechnik (WBK)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 09.2024
Sprache Englisch
Identifikator ISSN: 2504-4990
KITopen-ID: 1000175085
Erschienen in Machine Learning and Knowledge Extraction
Verlag MDPI
Band 6
Heft 3
Seiten 1969 – 1996
Vorab online veröffentlicht am 27.08.2024
Schlagwörter transfer learning, RUL prediction, ball bearings, black box model, time series classification, predictive paintenance
Nachgewiesen in Scopus
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page