KIT | KIT-Bibliothek | Impressum | Datenschutz

Decomposition and graphical correspondence analysis of checkerboard copulas

Grothe, Oliver 1; Rieger, Jonas ORCID iD icon 1
1 Institut für Operations Research (IOR), Karlsruher Institut für Technologie (KIT)

Abstract:

We analyze optimal low-rank approximations and correspondence analysis of the dependence structure given by arbitrary bivariate checkerboard copulas. Methodologically, we make use of the truncation of singular value decompositions of doubly stochastic matrices representing the copulas. The resulting (truncated) representations of the dependence structures are sparse, in particular, compared to the number of squares on the checkerboard. The additive structure of the decomposition carries through to statistical functionals of the copula, such as Kendall’s τ or Spearman’s ρ , and also motivates similarity measures for checkerboard copulas. We link our analysis to continuous decompositions of copula densities and copula-generating algorithms and discuss further general properties of the decomposition and its truncation. For example, truncated series might lack nonnegativity, and approximation errors increase for monotonicity-like copulas. We provide algorithms and extensions that account for and counteract these properties. The low-rank representation is illustrated for various copula examples, and some analytical results are derived. The resulting correspondence analysis profile plots are analyzed, providing graphical insights into the dependence structure implied by the copula. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000175118
Veröffentlicht am 14.10.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Operations Research (IOR)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 18.09.2024
Sprache Englisch
Identifikator ISSN: 2300-2298
KITopen-ID: 1000175118
Erschienen in Dependence Modeling
Verlag De Gruyter Open
Band 12
Heft 1
Seiten Art.-Nr.: 20240006
Nachgewiesen in Scopus
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page