KIT | KIT-Bibliothek | Impressum | Datenschutz

Boosting Distributional Copula Regression

Hans, Nicolai; Klein, Nadja ORCID iD icon 1; Faschingbauer, Florian; Schneider, Michael; Mayr, Andreas
1 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)

Abstract:

Capturing complex dependence structures between outcome variables (e.g., study endpoints) is of high relevance in contemporary biomedical data problems and medical research. Distributional copula regression provides a flexible tool to model the joint distribution of multiple outcome variables by disentangling the marginal response distributions and their dependence structure. In a regression setup, each parameter of the copula model, that is, the marginal distribution parameters and the copula dependence parameters, can be related to covariates via structured additive predictors. We propose a framework to fit distributional copula regression via model-based boosting, which is a modern estimation technique that incorporates useful features like an intrinsic variable selection mechanism, parameter shrinkage and the capability to fit regression models in high-dimensional data setting, that is, situations with more covariates than observations. Thus, model-based boosting does not only complement existing Bayesian and maximum-likelihood based estimation frameworks for this model class but rather enables unique intrinsic mechanisms that can be helpful in many applied problems. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000175233
Veröffentlicht am 16.10.2024
Originalveröffentlichung
DOI: 10.1111/biom.13765
Scopus
Zitationen: 2
Web of Science
Zitationen: 3
Dimensions
Zitationen: 10
Cover der Publikation
Zugehörige Institution(en) am KIT Scientific Computing Center (SCC)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 30.09.2023
Sprache Englisch
Identifikator ISSN: 0006-341X, 1541-0420
KITopen-ID: 1000175233
HGF-Programm 46.21.02 (POF IV, LK 01) Cross-Domain ATMLs and Research Groups
Erschienen in Biometrics
Verlag John Wiley and Sons
Band 79
Heft 3
Seiten 2298–2310
Projektinformation Boosting Copulas (DFG, DFG EIN, KL3037/2-1)
Vorab online veröffentlicht am 27.09.2022
Nachgewiesen in Scopus
Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page