KIT | KIT-Bibliothek | Impressum | Datenschutz

Boosting Distributional Copula Regression

Hans, Nicolai; Klein, Nadja ORCID iD icon 1; Faschingbauer, Florian; Schneider, Michael; Mayr, Andreas
1 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)

Abstract:

Capturing complex dependence structures between outcome variables (e.g., study endpoints) is of high relevance in contemporary biomedical data problems and medical research. Distributional copula regression provides a flexible tool to model the joint distribution of multiple outcome variables by disentangling the marginal response distributions and their dependence structure. In a regression setup, each parameter of the copula model, that is, the marginal distribution parameters and the copula dependence parameters, can be related to covariates via structured additive predictors. We propose a framework to fit distributional copula regression via model-based boosting, which is a modern estimation technique that incorporates useful features like an intrinsic variable selection mechanism, parameter shrinkage and the capability to fit regression models in high-dimensional data setting, that is, situations with more covariates than observations. Thus, model-based boosting does not only complement existing Bayesian and maximum-likelihood based estimation frameworks for this model class but rather enables unique intrinsic mechanisms that can be helpful in many applied problems. ... mehr

Zugehörige Institution(en) am KIT Scientific Computing Center (SCC)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 30.09.2023
Sprache Englisch
Identifikator ISSN: 0006-341X, 1541-0420
KITopen-ID: 1000175233
HGF-Programm 46.21.02 (POF IV, LK 01) Cross-Domain ATMLs and Research Groups
Erschienen in Biometrics
Verlag John Wiley and Sons
Band 79
Heft 3
Seiten 2298–2310
Projektinformation Boosting Copulas (DFG, DFG EIN, KL3037/2-1)
Vorab online veröffentlicht am 27.09.2022
Nachgewiesen in Scopus
Web of Science
Dimensions
OpenAlex

Verlagsausgabe §
DOI: 10.5445/IR/1000175233
Veröffentlicht am 16.10.2024
Originalveröffentlichung
DOI: 10.1111/biom.13765
Scopus
Zitationen: 7
Web of Science
Zitationen: 3
Dimensions
Zitationen: 17
Seitenaufrufe: 40
seit 16.10.2024
Downloads: 32
seit 20.10.2024
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page