KIT | KIT-Bibliothek | Impressum | Datenschutz

Taylor Expansion in Neural Networks: How Higher Orders Yield Better Predictions

Zwerschke, Pavel 1; Weyrauch, Arvid ORCID iD icon 1; Götz, Markus ORCID iD icon 1; Debus, Charlotte 1
1 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)

Abstract:

Deep learning has become a popular tool for solving complex problems in a variety of domains. Transformers and the attention mechanism have contributed a lot to this success. We hypothesize that the enhanced predictive capabilities of the attention mechanism can be attributed to higher-order terms in the input. Expanding on this idea and taking inspiration from Taylor Series approximation, we introduce “Taylor layers” as higher order polynomial layers for universal function approximation. We evaluate Taylor layers of second and third order on the task of time series forecasting, comparing them to classical linear layers as well as the attention mechanism. Our results on two commonly used datasets demonstrate that higher expansion orders can improve prediction accuracy given the same amount of trainable model weights. Interpreting higher-order terms as a form of token mixing, we further show that second order (quadratic) Taylor layers can efficiently replace canonical dot-product attention, increasing prediction accuracy while reducing computational requirements.


Verlagsausgabe §
DOI: 10.5445/IR/1000175300
Veröffentlicht am 21.10.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Scientific Computing Center (SCC)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 16.10.2024
Sprache Englisch
Identifikator ISBN: 978-1-64368-548-9
ISSN: 0922-6389
KITopen-ID: 1000175300
HGF-Programm 46.21.04 (POF IV, LK 01) HAICU
Weitere HGF-Programme 46.21.01 (POF IV, LK 01) Domain-Specific Simulation & SDLs and Research Groups
Erschienen in ECAI 2024 – 27th European Conference on Artificial Intelligence, 19–24 October 2024, Santiago de Compostela, Spain – Including 13th Conference on Prestigious Applications of Intelligent Systems (PAIS 2024). Ed.: U. Endriss
Veranstaltung 27th/13th European Conference on Artificial Intelligence including Conference on Prestigious Applications of Intelligent Systems (ECAI/PAIS 2024), Santiago de Compostela, Spanien, 19.10.2024 – 24.10.2024
Verlag IOS Press
Seiten 2983-2989
Serie Frontiers in Artificial Intelligence and Applications
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page