KIT | KIT-Bibliothek | Impressum | Datenschutz

Classifier surrogates: sharing AI-based searches with the world

Bieringer, Sebastian ; Kasieczka, Gregor; Kieseler, Jan 1; Trabs, Mathias 2
1 Institut für Experimentelle Teilchenphysik (ETP), Karlsruher Institut für Technologie (KIT)
2 Institut für Stochastik (STOCH), Karlsruher Institut für Technologie (KIT)

Abstract:

In recent years, neural network-based classifica-
tion has been used to improve data analysis at collider exper-
iments. While this strategy proves to be hugely successful,
the underlying models are not commonly shared with the
public and rely on experiment-internal data as well as full
detector simulations. We show a concrete implementation of
a newly proposed strategy, so-called Classifier Surrogates, to
be trained inside the experiments, that only utilise publicly
accessible features and truth information. These surrogates
approximate the original classifier distribution, and can be
shared with the public. Subsequently, such a model can be
evaluated by sampling the classification output from high-
level information without requiring a sophisticated detector
simulation. Technically, we show that continuous normaliz-
ing flows are a suitable generative architecture that can be
efficiently trained to sample classification results using con-
ditional flow matching. We further demonstrate that these
models can be easily extended by Bayesian uncertainties
to indicate their degree of validity when confronted with
unknown inputs by the user. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000175525
Veröffentlicht am 24.10.2024
Originalveröffentlichung
DOI: 10.1140/epjc/s10052-024-13353-w
Scopus
Zitationen: 1
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Experimentelle Teilchenphysik (ETP)
Institut für Stochastik (STOCH)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 1434-6052
KITopen-ID: 1000175525
Erschienen in The European Physical Journal C
Verlag Springer-Verlag
Band 84
Heft 9
Seiten Art.-Nr.: 972
Vorab online veröffentlicht am 27.09.2024
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page