KIT | KIT-Bibliothek | Impressum | Datenschutz

Structure and Independence in Hyperbolic Uniform Disk Graphs

Bläsius, Thomas ORCID iD icon 1; von der Heydt, Jean-Pierre; Kisfaludi-Bak, Sándor; Wilhelm, Marcus; van Wordragen, Geert
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)

Abstract:

We consider intersection graphs of disks of radius $r$ in the hyperbolic plane. Unlike the Euclidean setting, these graph classes are different for different values of $r$, where very small $r$ corresponds to an almost-Euclidean setting and $r \in Ω(\log n)$ corresponds to a firmly hyperbolic setting. We observe that larger values of $r$ create simpler graph classes, at least in terms of separators and the computational complexity of the \textsc{Independent Set} problem.
First, we show that intersection graphs of disks of radius $r$ in the hyperbolic plane can be separated with $\mathcal{O}((1+1/r)\log n)$ cliques in a balanced manner. Our second structural insight concerns Delaunay complexes in the hyperbolic plane and may be of independent interest. We show that for any set $S$ of $n$ points with pairwise distance at least $2r$ in the hyperbolic plane the corresponding Delaunay complex has outerplanarity $1+\mathcal{O}(\frac{\log n}{r})$, which implies a similar bound on the balanced separators and treewidth of such Delaunay complexes.
Using this outerplanarity (and treewidth) bound we prove that \textsc{Independent Set} can be solved in $n^{\mathcal{O}(1+\frac{\log n}{r})}$ time. ... mehr


Volltext §
DOI: 10.5445/IR/1000175533
Veröffentlicht am 24.10.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Informatik (ITI)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2024
Sprache Englisch
Identifikator KITopen-ID: 1000175533
Verlag arxiv
Schlagwörter Computational Geometry (cs.CG), Data Structures and Algorithms (cs.DS), F.2.2
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page