KIT | KIT-Bibliothek | Impressum | Datenschutz

The NFA Acceptance Hypothesis: Non-Combinatorial and Dynamic Lower Bounds

Bringmann, Karl; Grønlund, Allan; Künnemann, Marvin 1; Larsen, Kasper Green; Guruswami, Venkatesan [Hrsg.]
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)

Abstract:

We pose the fine-grained hardness hypothesis that the textbook algorithm for the NFA Acceptance problem is optimal up to subpolynomial factors, even for dense NFAs and fixed alphabets.
We show that this barrier appears in many variations throughout the algorithmic literature by introducing a framework of Colored Walk problems. These yield fine-grained equivalent formulations of the NFA Acceptance problem as problems concerning detection of an s-t-walk with a prescribed color sequence in a given edge- or node-colored graph. For NFA Acceptance on sparse NFAs (or equivalently, Colored Walk in sparse graphs), a tight lower bound under the Strong Exponential Time Hypothesis has been rediscovered several times in recent years. We show that our hardness hypothesis, which concerns dense NFAs, has several interesting implications:
- It gives a tight lower bound for Context-Free Language Reachability. This proves conditional optimality for the class of 2NPDA-complete problems, explaining the cubic bottleneck of interprocedural program analysis.
- It gives a tight $(n+nm^{1/3})^{1−o(1)}$ lower bound for the Word Break problem on strings of length n and dictionaries of total size m.
... mehr


Volltext §
DOI: 10.5445/IR/1000175552
Veröffentlicht am 25.10.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Informatik (ITI)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2023
Sprache Englisch
Identifikator KITopen-ID: 1000175552
Vorab online veröffentlicht am 16.11.2023
Schlagwörter fine-grained complexity theory, non-deterministic finite automata, OMv hypothesis, CFL reachability, Word Break problem
Nachgewiesen in Dimensions
arXiv
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page