KIT | KIT-Bibliothek | Impressum | Datenschutz

Combinatorial Designs Meet Hypercliques: Higher Lower Bounds for Klee’s Measure Problem and Related Problems in Dimensions d ≥ 4

Gorbachev, Egor; Künnemann, Marvin; Chambers, Erin W. [Hrsg.]; Gudmundsson, Joachim [Hrsg.]

Abstract:

Klee’s measure problem (computing the volume of the union of n axis-parallel boxes in $ℝ^d)$ is well known to have $n^{d/2± o(1)}$-time algorithms (Overmars, Yap, SICOMP'91; Chan FOCS'13). Only recently, a conditional lower bound (without any restriction to "combinatorial" algorithms) could be shown for d = 3 (Künnemann, FOCS'22). Can this result be extended to a tight lower bound for dimensions d ≥ 4?
In this paper, we formalize the technique of the tight lower bound for d = 3 using a combinatorial object we call prefix covering design. We show that these designs, which are related in spirit to combinatorial designs, directly translate to conditional lower bounds for Klee’s measure problem and various related problems. By devising good prefix covering designs, we give the following lower bounds for Klee’s measure problem in $ℝ^d$, the depth problem for axis-parallel boxes in $ℝ^d$, the largest-volume/max-perimeter empty (anchored) box problem in $ℝ^{2d}$, and related problems:
- $Ω(n^{1.90476})$ for $d = 4$,
- $Ω(n^{2.22222})$ for $d = 5$,
- $Ω(n^{d/3 + 2√d/9-o(√d)})$ for general d, assuming the 3-uniform hyperclique hypothesis. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000175555
Veröffentlicht am 25.10.2024
Originalveröffentlichung
DOI: 10.4230/LIPIcs.SoCG.2023.36
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Informatik (ITI)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 09.06.2023
Sprache Englisch
Identifikator ISBN: 978-3-95977-273-0
ISSN: 1868-8969
KITopen-ID: 1000175555
Erschienen in 39th International Symposium on Computational Geometry (SoCG 2023)
Veranstaltung 39th International Symposium on Computational Geometry (SoCG 2023), Dallas, TX, USA, 12.06.2023 – 15.06.2023
Verlag Schloss Dagstuhl - Leibniz-Zentrum für Informatik (LZI)
Seiten 36:1-36:14
Serie Leibniz International Proceedings in Informatics (LIPIcs) ; 258
Schlagwörter Fine-grained complexity theory, non-combinatorial lower bounds, computational geometry, clique detection, Theory of computation → Design and analysis of algorithms
Nachgewiesen in Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page