KIT | KIT-Bibliothek | Impressum | Datenschutz

On Comparable Box Dimension

Dvorák, Zdenek; Goncalves, Daniel; Lahiri, Abhiruk; Tan, Jane; Ueckerdt, Torsten

Abstract:

Two boxes in $\mathbb{R}^d$ are comparable if one of them is a subset of a translation of the other one. The comparable box dimension of a graph $G$ is the minimum integer $d$ such that $G$ can be represented as a touching graph of comparable axis-aligned boxes in $\mathbb{R}^d$. We show that proper minor-closed classes have bounded comparable box dimensions and explore further properties of this notion.


Volltext §
DOI: 10.5445/IR/1000175598
Veröffentlicht am 25.10.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Informatik (ITI)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2022
Sprache Englisch
Identifikator KITopen-ID: 1000175598
Verlag arxiv
Schlagwörter Discrete Mathematics (cs.DM), Data Structures and Algorithms (cs.DS), Combinatorics (math.CO), F.2.2, 05C85
Nachgewiesen in Dimensions
arXiv
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page