KIT | KIT-Bibliothek | Impressum | Datenschutz

Anomalous frozen evanescent phonons

Chen, Yi 1,2; Schneider, Jonathan L. G. 1; Wang, Ke 1; Scott, Philip 1; Kalt, Sebastian 1; Kadic, Muamer; Wegener, Martin 1,2
1 Institut für Angewandte Physik (APH), Karlsruher Institut für Technologie (KIT)
2 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Evanescent Bloch waves are eigensolutions of spatially periodic problems for complex-valued wavenumbers at finite frequencies, corresponding to solutions that oscillate in time and space and that exponentially decay in space. Such evanescent waves are ubiquitous in optics, plasmonics, elasticity, and acoustics. In the limit of zero frequency, the wave “freezes” in time. We introduce frozen evanescent waves as the eigensolutions of the Bloch periodic problem at zero eigenfrequency. Elastic waves, i.e., phonons, in metamaterials serve as an example. We show that, in the complex plane, the Cauchy-Riemann equations for analytical functions connect the minima of the phonon band structure to frozen evanescent phonons. Their exponential decay length becomes unusually large if a minimum in the band structure tends to zero and thereby approaches a soft mode. This connection between unusual static and dynamic behaviors allows to engineer large characteristic decay lengths in static elasticity. For finite-size samples, the static solutions for given boundary conditions are linear combinations of frozen evanescent phonons, leading to interference effects. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000175746
Veröffentlicht am 29.10.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Physik (APH)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 2041-1723
KITopen-ID: 1000175746
HGF-Programm 43.32.02 (POF IV, LK 01) Designed Optical Materials
Erschienen in Nature Communications
Verlag Nature Research
Band 15
Heft 1
Seiten 8882
Vorab online veröffentlicht am 24.10.2024
Nachgewiesen in Scopus
Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page