KIT | KIT-Bibliothek | Impressum | Datenschutz

Employing nonresonant step sizes for time integration of highly oscillatory nonlinear Dirac equations

Jahnke, Tobias 1; Kirn, Michael 1
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract:

In the nonrelativistic limit regime, nonlinear Dirac equations involve a small parameter $\varepsilon>0$ which induces rapid temporal oscillations with frequency proportional to $\varepsilon^{-2}$. Efficient time integrators are challenging to construct, since their accuracy has to be independent of $\varepsilon$ or improve with smaller values of $\varepsilon$. In [10], Yongyong Cai and Yan Wang have presented a nested Picard iterative integrator (NPI-2), which is a uniformly accurate second-order scheme. We propose a novel method called the 'nonresonant nested Picard iterative integrator (NRNPI)', which takes advantage of cancellation effects in the global error to significantly simplify the NPI-2. We prove that for non-resonant step sizes $\tau\ge\frac{\pi}{4}\varepsilon^2$, the NRNPI has the same accuracy as the 4NPI-2 and is thus more efficient. Moreover, we show that for arbitrary $\tau<\frac{\pi}{4}\varepsilon^2$ the error decreases proportionally to $\varepsilon^2\tau$ . We provide numerical experiments to illustrate the error behavior as well as the efficiency gain.


Volltext §
DOI: 10.5445/IR/1000175882
Veröffentlicht am 05.11.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 11.2024
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000175882
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 36 S.
Serie CRC 1173 Preprint ; 2024/23
Projektinformation SFB 1173/3 (DFG, DFG KOORD, SFB 1173/3)
Externe Relationen Siehe auch
Schlagwörter nonlinear Dirac equation, nonrelativistic limit regime, highly oscillatory problems, time integration, error bounds, resonances
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page