KIT | KIT-Bibliothek | Impressum | Datenschutz

Induced Turán problem in bipartite graphs

Axenovich, Maria 1; Zimmermann, Jakob 1
1 Karlsruher Institut für Technologie (KIT)

Abstract:

The classical extremal function for a graph H, ex(Kn, H) is the largest number of edges in a subgraph of Kn that contains no subgraph isomorphic to H. Note that defining ex(Kn, H-ind) by forbidding induced subgraphs isomorphic to H is not very meaningful for a non-complete H since one can avoid it by considering a clique. For graphs F and H, let ex(Kn, {F, H-ind}) be the largest number of edges in an n-vertex graph that contains no subgraph isomorphic to F and no induced subgraph isomorphic to H. Determining this function asymptotically reduces to finding either ex(Kn, F) or ex(Kn, H), unless H is a biclique or both F and H are bipartite. Here, we consider the bipartite setting, ex(Kn,n, {F, H-ind}) when Kn is replaced with Kn,n, F is a biclique, and H is a bipartite graph. Our main result, a strengthening of a result by Sudakov and Tomon, implies that for any d >= 2 and any Kd,d-free bipartite graph H with each vertex in one part of degree either at most d or a full degree, so that there are at most d - 2 full degree vertices in that part, one has ex(Kn,n, {Kt,t, H-ind}) = o(n2-1/d). This provides an upper bound on the induced Tur & aacute;n number for a wide class of bipartite graphs and implies in particular an extremal result for bipartite graphs of bounded VC-dimension by Janzer and Pohoata.

Zugehörige Institution(en) am KIT Fakultät für Mathematik (MATH)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 15.01.2025
Sprache Englisch
Identifikator ISSN: 0166-218X
KITopen-ID: 1000175936
Erschienen in Discrete Applied Mathematics
Verlag Elsevier
Band 360
Seiten 497–505
Vorab online veröffentlicht am 22.10.2024
Nachgewiesen in Scopus
OpenAlex
Web of Science
Dimensions
Globale Ziele für nachhaltige Entwicklung Ziel 13 – Maßnahmen zum Klimaschutz

Verlagsausgabe §
DOI: 10.5445/IR/1000175936
Veröffentlicht am 05.11.2024
Seitenaufrufe: 54
seit 05.11.2024
Downloads: 19
seit 09.11.2024
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page