KIT | KIT-Bibliothek | Impressum | Datenschutz

Mixed orthogonality graphs for continuous‐time state space models and orthogonal projections

Fasen-Hartmann, Vicky 1; Schenk, Lea ORCID iD icon 1
1 Institut für Stochastik (STOCH), Karlsruher Institut für Technologie (KIT)

Abstract:

In this article, we derive (local) orthogonality graphs for the popular continuous-time state space models, including in particular multivariate continuous-time ARMA (MCARMA) processes. In these (local) orthogonality graphs, vertices represent the
components of the process, directed edges between the vertices indicate causal influences and undirected edges indicate contemporaneous correlations between the component processes. We present sufficient criteria for state space models to satisfy the assumptions of Fasen-Hartmann and Schenk (2024a) so that the (local) orthogonality graphs are well-defined and various Markov properties hold. Both directed and undirected edges in these graphs are characterised by orthogonal projections on well-defined linear spaces. To compute these orthogonal projections, we use the unique controller canonical form of a state space model, which exists under mild assumptions, to recover the input process from the output process. We are then able to derive some alternative representations of the output process and its highest derivative. Finally, we apply these representations to calculate the necessary orthogonal projections, which culminate in the characterisations of the edges in the (local) orthogonality graph. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000176186
Veröffentlicht am 11.11.2024
Originalveröffentlichung
DOI: 10.1111/jtsa.12787
Scopus
Zitationen: 1
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Stochastik (STOCH)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 0143-9782, 1467-9892
KITopen-ID: 1000176186
Erschienen in Journal of Time Series Analysis
Verlag John Wiley and Sons
Seiten Art.-Nr.: 12787
Vorab online veröffentlicht am 30.10.2024
Nachgewiesen in Web of Science
Scopus
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page