KIT | KIT-Bibliothek | Impressum | Datenschutz

Lateral Mn$_5$Ge$_3$ spin-valve in contact with a high-mobility Ge two-dimensional hole gas

Weißhaupt, David; Sürgers, Christoph ORCID iD icon 1; Bloos, Dominik; Funk, Hannes Simon; Oehme, Michael; Fischer, Gerda 1; Schubert, Markus Andreas; Wenger, Christian; van Slageren, Joris; Fischer, Inga Anita; Schulze, Jörg
1 Physikalisches Institut (PHI), Karlsruher Institut für Technologie (KIT)

Abstract:

Ge two-dimensional hole gases (2DHG) in strained modulation-doped quantum-wells represent
a promising material platform for future spintronic applications due to their excellent spin
transport properties and the theoretical possibility of efficient spin manipulation. Due to the
continuous development of epitaxial growth recipes extreme high hole mobilities and low
effective masses can be achieved, promising an efficient spin transport. Furthermore,
the Ge 2DHG can be integrated in the well-established industrial complementary
metal-oxide-semiconductor (CMOS) devices technology. However, efficient electrical spin
injection into a Ge 2DHG—an essential prerequisite for the realization of spintronic
devices—has not yet been demonstrated. In this work, we report the fabrication and
low-temperature magnetoresistance (MR) measurements of a laterally structured Mn$_5$Ge$_3$/Ge
2DHG/ Mn$_5$Ge$_3$ device. The ferromagnetic Mn$_5$Ge$_3$ contacts are grown directly into the Ge
quantum well by means of an interdiffusion process with a spacing of approximately 130 nm,
forming a direct electrical contact between the ferromagnetic metal and the Ge 2DHG. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000176195
Veröffentlicht am 12.11.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Physikalisches Institut (PHI)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 01.12.2024
Sprache Englisch
Identifikator ISSN: 0268-1242, 1361-6641
KITopen-ID: 1000176195
Erschienen in Semiconductor Science and Technology
Verlag Institute of Physics Publishing Ltd (IOP Publishing Ltd)
Band 39
Heft 12
Seiten 125004
Vorab online veröffentlicht am 08.11.2024
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page