KIT | KIT-Bibliothek | Impressum | Datenschutz

Inverse design of polaritonic devices

Kuster, Oliver 1; Augenstein, Yannick ORCID iD icon 1; Rockstuhl, Carsten ORCID iD icon 1,2; Sturges, Thomas Jebb 1
1 Institut für Theoretische Festkörperphysik (TFP), Karlsruher Institut für Technologie (KIT)
2 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

Polaritons, arising from the strong coupling between excitons and photons within microcavities, hold promise for optoelectronic and all-
optical devices. They have found applications in various domains, including low-threshold lasers and quantum information processing. To realize complex functionalities, non-intuitive designs for polaritonic devices are required. In this contribution, we use finite-difference time-domain simulations of the dissipative Gross–Pitaevskii equation, written in a differentiable manner, and combine it with an adjoint formulation. Such a method allows us to use topology optimization to engineer the potential landscape experienced by polariton condensates to tailor its characteristics on demand. The potential directly translates to a blueprint for a functional device, and various fabrication and optical control techniques can experimentally realize it. We inverse-design a selection of polaritonic devices, i.e., a structure that spatially shapes the polaritons into a flat-top distribution, a metalens that focuses a polariton, and a nonlinearly activated isolator. The functionalities are preserved when employing realistic fabrication constraints such as minimum feature size and discretization of the potential. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000176207
Veröffentlicht am 12.11.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für Theoretische Festkörperphysik (TFP)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 28.10.2024
Sprache Englisch
Identifikator ISSN: 0003-6951, 1077-3118
KITopen-ID: 1000176207
HGF-Programm 43.32.02 (POF IV, LK 01) Designed Optical Materials
Erschienen in Applied Physics Letters
Verlag American Institute of Physics (AIP)
Band 125
Heft 18
Seiten Art.-Nr.: 181102
Nachgewiesen in Scopus
Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page