KIT | KIT-Bibliothek | Impressum | Datenschutz

Forest disturbance detection in Central Europe using transformers and Sentinel-2 time series

Schiller, Christopher ; Költzow, Jonathan; Schwarz, Selina ORCID iD icon 1; Schiefer, Felix ORCID iD icon 2; Fassnacht, Fabian Ewald ORCID iD icon 2
1 Institut für Meteorologie und Klimaforschung – Atmosphärische Umweltforschung (IMK-IFU), Karlsruher Institut für Technologie (KIT)
2 Institut für Geographie und Geoökologie (IFGG), Karlsruher Institut für Technologie (KIT)

Abstract:

Forests provide important ecosystem functions such as carbon sequestration and climate regulation, particularly in countries with high forest cover. Climate change-induced extreme weather events have a negative impact on many forest ecosystems. In Germany, for instance, the drought of the years 2018 until 2020 resulted in signs of damage in almost 80% of trees. This decline in forest vitality has additionally led to severe bark beetle infestations and widespread tree mortality, posing significant challenges to forest managers to obtain a complete picture of the state of their forests. Since a completely ground-based monitoring of forest condition is not feasible due to the forests' vast extent, remote sensing and particularly multispectral satellite image time series (SITS) analysis were suggested as efficient alternatives. Transformers, a state-of-the-art Deep Learning (DL) architecture, have shown promising results in the classification of multivariate SITS for other applications. Here, we use Transformers in combination with Sentinel-2 (S2) time series data to test if they can improve forest disturbance detection capabilities in comparison to conventional methods by automatically extracting relevant information from background variability throughout the whole time series. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000176216
Veröffentlicht am 13.11.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Meteorologie und Klimaforschung – Atmosphärische Umweltforschung (IMK-IFU)
Institut für Geographie und Geoökologie (IFGG)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 15.12.2024
Sprache Englisch
Identifikator ISSN: 0034-4257
KITopen-ID: 1000176216
HGF-Programm 12.11.24 (POF IV, LK 01) Adaptation of natural landscapes to climate change
Erschienen in Remote Sensing of Environment
Verlag Elsevier
Band 315
Seiten 114475
Vorab online veröffentlicht am 24.10.2024
Nachgewiesen in Scopus
Web of Science
Dimensions
Globale Ziele für nachhaltige Entwicklung Ziel 13 – Maßnahmen zum Klimaschutz
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page