KIT | KIT-Bibliothek | Impressum | Datenschutz

Filtered finite difference methods for nonlinear Schrödinger equations in semiclassical scaling

Shi, Yanyan; Lubich, Christian

Abstract:

This paper introduces filtered finite difference methods for numerically solving a dispersive evolution equation with solutions that are highly oscillatory in both space and time. We consider a semiclassically scaled nonlinear Schrödinger equation with highly oscillatory initial data in the form of a modulated plane wave. The proposed methods do not need to resolve high-frequency oscillations in both space and time by prohibitively fine grids as would be required by standard finite difference methods. The approach taken here modifies traditional finite difference methods by incorporating appropriate filters. Specifically, we propose the filtered leapfrog and filtered Crank–Nicolson methods, both of which achieve second-order accuracy with time steps and mesh sizes that are not restricted in magnitude by the small semiclassical parameter. Furthermore, the filtered Crank–Nicolson method conserves both the discrete mass and a discrete energy. Numerical experiments illustrate the theoretical results.


Volltext §
DOI: 10.5445/IR/1000176236
Veröffentlicht am 14.11.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 11.2024
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000176236
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 16 S.
Serie CRC 1173 Preprint ; 2024/24
Projektinformation SFB 1173/3 (DFG, DFG KOORD, SFB 1173/3)
Externe Relationen Abstract/Volltext
Schlagwörter finite difference method, filter, nonlinear Schrödinger equation, semiclassical, highly oscillatory, asymptotic-preserving, uniformly accurate
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page