KIT | KIT-Bibliothek | Impressum | Datenschutz

Predicting Phylogenetic Bootstrap Values via Machine Learning

Wiegert, Julius ; Höhler, Dimitri; Haag, Julia; Stamatakis, Alexandros ORCID iD icon 1; Rzhetsky, Andrey [Hrsg.]
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)

Abstract:

Estimating the statistical robustness of the inferred tree(s) constitutes an integral part of most phylogenetic analyses. Commonly, one computes and assigns a branch support value to each inner branch of the inferred phylogeny. The still most widely used method for calculating branch support on trees inferred under maximum likelihood (ML) is the Standard, nonparametric Felsenstein bootstrap support (SBS). Due to the high computational cost of the SBS, a plethora of methods has been developed to approximate it, for instance, via the rapid bootstrap (RB) algorithm. There have also been attempts to devise faster, alternative support measures, such as the SH-aLRT (Shimodaira-Hasegawa-like approximate likelihood ratio test) or the UltraFast bootstrap 2 (UFBoot2) method. Those faster alternatives exhibit some limitations, such as the need to assess model violations (UFBoot2) or unstable behavior in the low support interval range (SH-aLRT). Here, we present the educated bootstrap guesser (EBG), a machine learning-based tool that predicts SBS branch support values for a given input phylogeny. EBG is on average 9.4 (sigma=5.5) times faster than UFBoot2. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000176269
Veröffentlicht am 14.11.2024
Originalveröffentlichung
DOI: 10.1093/molbev/msae215
Scopus
Zitationen: 1
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Informatik (ITI)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 30.10.2024
Sprache Englisch
Identifikator ISSN: 0737-4038, 1537-1719
KITopen-ID: 1000176269
Erschienen in Molecular Biology and Evolution
Verlag Oxford University Press (OUP)
Band 41
Heft 10
Vorab online veröffentlicht am 17.10.2024
Nachgewiesen in Web of Science
Dimensions
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 3 – Gesundheit und Wohlergehen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page