KIT | KIT-Bibliothek | Impressum | Datenschutz

Tensorial harmonic bases of arbitrary order with applications in elasticity, elastoviscoplasticity and texture-based modeling

Krause, Maximilian ORCID iD icon 1; Böhlke, Thomas ORCID iD icon 1
1 Institut für Technische Mechanik (ITM), Karlsruher Institut für Technologie (KIT)

Abstract:

In continuum mechanics, one regularly encounters higher-order tensors that require tensorial bases for theoretical or numerical calculations. By using results from SO ( 3 ) representation theory, we present a method to derive tensorial harmonic bases which unifies existing approaches in one framework. Applying this convention to symmetric second-order tensors results in a second-order harmonic basis which, for example, simplifies the depiction and numerical handling of stiffness tensors for most common material symmetries and reduces the computational effort involved in implementations of incompressible elastoviscoplastic material laws. The same convention can be applied to texture analysis to yield tensorial texture coefficients for both polycrystals and fiber-reinforced composites. Rotations of higher-order tensors are particularly efficient in harmonic bases as both material and index symmetries can be exploited. While special attention is given here to the examples of small-strain material laws and texture analysis, the framework is entirely general and can be used to simplify calculations in other physical contexts involving tensors of arbitrary order and symmetry. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000176270
Veröffentlicht am 14.11.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technische Mechanik (ITM)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 1081-2865, 1741-3028
KITopen-ID: 1000176270
Erschienen in Mathematics and Mechanics of Solids
Verlag SAGE Publications
Vorab online veröffentlicht am 16.10.2024
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page