KIT | KIT-Bibliothek | Impressum | Datenschutz

ImageAugmenter: A user-friendly 3D Slicer tool for medical image augmentation

Raggio, Ciro Benito 1; Zaffino, Paolo; Spadea, Maria Francesca 1
1 Institut für Biomedizinische Technik (IBT), Karlsruher Institut für Technologie (KIT)

Abstract:

Limited medical image data hinders the training of deep learning (DL) models in the biomedical field. Image augmentation can reduce the data-scarcity problem by generating variations of existing images. However, currently implemented methods require coding, excluding non-programmer users from this opportunity.
We therefore present ImageAugmenter, an easy-to-use and open-source module for 3D Slicer imaging computing platform. It offers a simple and intuitive interface for applying over 20 simultaneous MONAI Transforms (spatial, intensity, etc.) to medical image datasets, all without programming.
ImageAugmenter makes accessible medical image augmentation, enabling a wider range of users to improve the performance of DL models in medical image analysis by increasing the number of samples available for training.


Verlagsausgabe §
DOI: 10.5445/IR/1000176449
Veröffentlicht am 20.11.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Biomedizinische Technik (IBT)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2024
Sprache Englisch
Identifikator ISSN: 2352-7110
KITopen-ID: 1000176449
Erschienen in SoftwareX
Verlag Elsevier
Band 28
Seiten 101923
Schlagwörter Medical imaging, Augmentation, 3D Slicer, Deep learning
Nachgewiesen in Scopus
Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page