KIT | KIT-Bibliothek | Impressum | Datenschutz

ImageAugmenter: A user-friendly 3D Slicer tool for medical image augmentation

Raggio, Ciro Benito 1; Zaffino, Paolo; Spadea, Maria Francesca 1
1 Institut für Biomedizinische Technik (IBT), Karlsruher Institut für Technologie (KIT)

Abstract:

Limited medical image data hinders the training of deep learning (DL) models in the biomedical field. Image augmentation can reduce the data-scarcity problem by generating variations of existing images. However, currently implemented methods require coding, excluding non-programmer users from this opportunity.
We therefore present ImageAugmenter, an easy-to-use and open-source module for 3D Slicer imaging computing platform. It offers a simple and intuitive interface for applying over 20 simultaneous MONAI Transforms (spatial, intensity, etc.) to medical image datasets, all without programming.
ImageAugmenter makes accessible medical image augmentation, enabling a wider range of users to improve the performance of DL models in medical image analysis by increasing the number of samples available for training.

Zugehörige Institution(en) am KIT Institut für Biomedizinische Technik (IBT)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2024
Sprache Englisch
Identifikator ISSN: 2352-7110
KITopen-ID: 1000176449
Erschienen in SoftwareX
Verlag Elsevier
Band 28
Seiten 101923
Schlagwörter Medical imaging, Augmentation, 3D Slicer, Deep learning
Nachgewiesen in Scopus
OpenAlex
Dimensions
Web of Science

Verlagsausgabe §
DOI: 10.5445/IR/1000176449
Veröffentlicht am 20.11.2024
Seitenaufrufe: 29
seit 20.11.2024
Downloads: 8
seit 11.12.2024
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page