KIT | KIT-Bibliothek | Impressum | Datenschutz

Mixed orthogonality graphs for continuous-time stationary processes

Fasen-Hartmann, Vicky 1; Schenk, Lea ORCID iD icon 1
1 Institut für Stochastik (STOCH), Karlsruher Institut für Technologie (KIT)

Abstract:

In this paper, we introduce different concepts of Granger causality and contemporaneous correlation for multivariate stationary continuous-time processes to model different dependencies between the component processes. Several equivalent characterisations are given for the different definitions, in particular by orthogonal projections. We then define two mixed graphs based on different definitions of Granger causality and contemporaneous correlation, the (mixed) orthogonality graph and the local (mixed) orthogonality graph. In these graphs, the components of the process are represented by vertices, directed edges between the vertices visualise Granger causal influences and undirected edges visualise contemporaneous correlation between the component processes. Further, we introduce various notions of Markov properties in analogy to Eichler (2012), which relate paths in the graphs to different dependence structures of subprocesses, and we derive sufficient criteria for the (local) orthogonality graph to satisfy them. Finally, as an example, for the popular multivariate continuous-time AR (MCAR) processes, we explicitly characterise the edges in the (local) orthogonality graph by the model parameters.


Verlagsausgabe §
DOI: 10.5445/IR/1000176460
Veröffentlicht am 20.11.2024
Originalveröffentlichung
DOI: 10.1016/j.spa.2024.104501
Scopus
Zitationen: 1
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Stochastik (STOCH)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 01.2025
Sprache Englisch
Identifikator ISSN: 0304-4149, 1879-209X
KITopen-ID: 1000176460
Erschienen in Stochastic Processes and their Applications
Verlag Elsevier
Band 179
Seiten 104501
Schlagwörter Granger causality, Contemporaneous correlation, Graphs, Markov property, MCAR processes, Linear prediction
Nachgewiesen in Dimensions
Scopus
Web of Science
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page