KIT | KIT-Bibliothek | Impressum | Datenschutz

Generalized Maxwell viscoelasticity for geometrically exact strings: Nonlinear port-Hamiltonian formulation and structure-preserving discretization

Kinon, P. L. ORCID iD icon 1; Thoma, T.; Betsch, P. 1; Kotyczka, P.
1 Institut für Mechanik (IFM), Karlsruher Institut für Technologie (KIT)

Abstract:

This contribution proposes a nonlinear and dissipative infinite-dimensional port-Hamiltonian (PH) model for the dynamics of geometrically exact strings. The mechanical model provides a description of large deformations including finite elastic and inelastic strains in a generalized Maxwell model. It is shown that the overall system results from a power-preserving interconnection of PH subsystems. By using a structure-preserving mixed finite element approach, a finite-dimensional PH model is derived. Eventually, midpoint discrete derivatives are employed to deduce an energy-consistent time-stepping method, which inherits discrete-time dissipativity for the irreversible system. An example simulation illustrates the numerical properties of the present approach.


Verlagsausgabe §
DOI: 10.5445/IR/1000176518
Veröffentlicht am 29.11.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Mechanik (IFM)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 25.09.2024
Sprache Englisch
Identifikator ISSN: 2405-8963
KITopen-ID: 1000176518
Erschienen in IFAC-PapersOnLine
Verlag International Federation of Automatic Control (IFAC)
Band 58
Heft 6
Seiten 101 – 106
Bemerkung zur Veröffentlichung Part of special issue: 8th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2024

Besançon, France, June 10 – 12, 2024
Schlagwörter Nonlinear port-Hamiltonian systems, generalized Maxwell model, structure-preserving discretization, mixed finite elements, discrete gradients
Nachgewiesen in Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page