KIT | KIT-Bibliothek | Impressum | Datenschutz

Learning Velocity-Based Humanoid Locomotion: Massively Parallel Learning with Brax and MJX

Thibault, William; Melek, William; Mombaur, Katja ORCID iD icon 1
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract:

Humanoid locomotion is a key skill to bring humanoids out of the lab and into the real-world. Many motion generation methods for locomotion have been proposed including reinforcement learning (RL). RL locomotion policies offer great versatility and generalizability along with the ability to experience new knowledge to improve over time. This work presents a velocity-based RL locomotion policy for the REEM-C robot. The policy uses a periodic reward formulation and is implemented in Brax/MJX for fast training. Simulation results for the policy are demonstrated with future experimental results in progress.


Volltext §
DOI: 10.5445/IR/1000176577
Veröffentlicht am 22.11.2024
Originalveröffentlichung
DOI: 10.48550/arXiv.2407.05148
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Forschungsbericht/Preprint
Publikationsdatum 26.09.2024
Sprache Englisch
Identifikator KITopen-ID: 1000176577
Umfang 5 S.
Nachgewiesen in arXiv
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page