KIT | KIT-Bibliothek | Impressum | Datenschutz

Explainable Deep Reinforcement Learning through Introspective Explanations

Wenninghoff, Nils ORCID iD icon 1
1 Institut für Informationssicherheit und Verlässlichkeit (KASTEL), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Nowadays modern life is influenced in many ways by artificial intelligence systems. This could be a decision of an artificial intelligence, an autonomous vehicle or functions of consumer devices. In many domains artificial intelligence can act faster, more precise or better than a human could. At the same time, most decision processes of artificial intelligence systems are opaque black box systems. Making these decision processes understandable to humans could increase the reliability, maintainability and trustworthiness of such systems. (World Model based) Deep Reinforcement Learning Agents are often too complex to be explained because decisions are influenced by previous states and actions. To address this complexity, a new multistep explanation will be introduced. The proposed approach uses learned world models and policies to imagine the future states and predicting actions for them. The imagination is used as explanation to understand the plan of the agent and to know and validate the targeted goal. A user study design was created to evaluate the effectiveness of this new form of explanation.


Verlagsausgabe §
DOI: 10.5445/IR/1000176578
Veröffentlicht am 25.11.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Informationssicherheit und Verlässlichkeit (KASTEL)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2024
Sprache Englisch
Identifikator KITopen-ID: 1000176578
Erschienen in Joint Proceedings of the xAI 2024 Late-breaking Work, Demos and Doctoral Consortium co-located with the 2nd World Conference on eXplainable Artificial Intelligence (xAI-2024), Valletta, Malta, July 17-19, 2024. Ed.: L. Longo
Veranstaltung 2nd World Conference on Explanable Artificial Intelligence (XAI 2024), Valletta, Malta, 17.07.2024 – 19.07.2024
Verlag RWTH Aachen
Seiten 449–456
Serie CEUR Workshop Proceedings ; 3793
Projektinformation ICM (MWK, 43757 (intern))
Externe Relationen Siehe auch
Schlagwörter Explainable Artificial Intelligence, Deep Reinforcement Learning, World Model, Introspective Explanation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page