KIT | KIT-Bibliothek | Impressum | Datenschutz

Analysis and Measurement of Attack Resilience of Differential Privacy

Guerra-Balboa, Patricia ORCID iD icon 1; Sauer, Annika 1; Strufe, Thorsten ORCID iD icon 1
1 Kompetenzzentrum für angewandte Sicherheitstechnologie (KASTEL), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Differential Privacy (DP) is the de facto standard privacy metric in private learning. Its robust mathematical definition makes it especially appealing for global data analytics without compromising individual privacy.
However, DP resilience against state-of-the-art attacks is not formalized consistently, and the interpretation of the privacy implications of parameter choices is not intuitive. This formalization is relevant because DP relies on the choice of a privacy budget, which is crucial in obtaining a good trade-off between the privacy of the individuals in the dataset and the utility of the results for data analysis.
This paper presents a systematic overview of theoretical bounds obtained in the literature on DP resilience against three types of attacks: the membership-inference, the attribute-inference, and the data reconstruction attacks. For each attack, we introduce tighter theoretical bounds and analyze the limitations of existing performance metrics. To overcome these limitations, we propose a new attack performance metric: Unbiased Reconstruction Robustness. In addition, we prove the relation between Unbiased Reconstruction Robustness and the already existing metrics, showing its consistency. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000176708
Veröffentlicht am 28.11.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Kompetenzzentrum für angewandte Sicherheitstechnologie (KASTEL)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 21.11.2024
Sprache Englisch
Identifikator ISBN: 979-84-00-71239-5
KITopen-ID: 1000176708
HGF-Programm 46.23.01 (POF IV, LK 01) Methods for Engineering Secure Systems
Erschienen in WPES '24: Proceedings of the 23rd Workshop on Privacy in the Electronic Society. Ed.: E. Ayday
Veranstaltung 23rd Workshop on Privacy in the Electronic Society (WPES 2024), Salt Lake City, UT, USA, 14.10.2024 – 18.10.2024
Verlag Association for Computing Machinery (ACM)
Seiten 155–171
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page