KIT | KIT-Bibliothek | Impressum | Datenschutz

A kinematic dataset of locomotion with gait and sit-to-stand movements of young adults

Hanisch, Simon 1,2; Pogrzeba, Loreen 2; Muschter, Evelyn 2; Li, Shu-Chen 2; Strufe, Thorsten ORCID iD icon 1,2
1 Kompetenzzentrum für angewandte Sicherheitstechnologie (KASTEL), Karlsruher Institut für Technologie (KIT)
2 Technische Universität Dresden (TU Dresden)

Abstract (englisch):

Kinematic data is a valuable source of movement information that provides insights into the health status, mental state, and motor skills of individuals. Additionally, kinematic data can serve as biometric data, enabling the identification of personal characteristics such as height, weight, and sex. In CeTI-Locomotion, four types of walking tasks and the 5 times sit-to-stand test (5RSTST) were recorded from 50 young adults wearing motion capture (mocap) suits equipped with Inertia-Measurement-Units (IMU). Our dataset is unique in that it allows the study of both intra- and inter-participant variability with high quality kinematic motion data for different motion tasks. Along with the raw kinematic data, we provide the source code for phase segmentation and the processed data, which has been segmented into a total of 4672 individual motion repetitions. To validate the data, we conducted visual inspection as well as machine-learning based identity and action recognition tests, achieving 97% and 84% accuracy, respectively. The data can serve as a normative reference of gait and sit-to-stand movements in healthy young adults and as training data for biometric recognition.


Verlagsausgabe §
DOI: 10.5445/IR/1000176724
Veröffentlicht am 28.11.2024
Cover der Publikation
Zugehörige Institution(en) am KIT KIT-Bibliothek (BIB)
Kompetenzzentrum für angewandte Sicherheitstechnologie (KASTEL)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 09.11.2024
Sprache Englisch
Identifikator ISSN: 2052-4463
KITopen-ID: 1000176724
HGF-Programm 46.23.01 (POF IV, LK 01) Methods for Engineering Secure Systems
Erschienen in Scientific Data
Verlag Nature Research
Band 11
Heft 1
Seiten Art.-Nr.: 1209
Nachgewiesen in Web of Science
Dimensions
Scopus
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page