KIT | KIT-Bibliothek | Impressum | Datenschutz

Enhancing Visual Inspection in Remanufacturing: A Reinforcement Learning Approach with Integrated Robot Simulation

Koch, Dominik 1; Kaiser, Jan-Philipp 1; Stamer, Florian ORCID iD icon 1; Stark, Rainer; Lanza, Gisela 1
1 Institut für Produktionstechnik (WBK), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

This paper presents a comprehensive approach for solving the View Planning Problem (VPP) in robotic inspection using Reinforcement Learning (RL). Building on a prior framework, this work takes a significant step forward by integrating a detailed robotic simulation environment with essential modules for trajectory and reachability planning. This allows for the development of an RL agent that not only selects adaptive viewpoints but also considers kinematic constraints and collision-free paths, which are crucial for practical, real-world inspections. The study specifically targets the initial inspection of returned products with high variability, demonstrating the feasibility of RL to manage complex tasks in remanufacturing. The RL-based solution is evaluated using Soft Actor-Critic (SAC) and Proximal Policy Optimization (PPO) algorithms, with SAC showing superior performance. The learned strategies where validated on a real inspection station, showing the capability of using RL based inspection strategies. This research offers a robust, adaptable solution for inspection challenges, bridging the gap between theoretical models and application-ready inspection systems.


Volltext §
DOI: 10.5445/IR/1000176932
Veröffentlicht am 04.12.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Produktionstechnik (WBK)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2024
Sprache Englisch
Identifikator KITopen-ID: 1000176932
Vorab online veröffentlicht am 04.12.2024
Schlagwörter Visual Inspection, Automation, Reinforcement Learning, Robotics
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page