KIT | KIT-Bibliothek | Impressum | Datenschutz

Concept for a geometry-insensitive high-field magnetic resonance detector

Chau-Nguyen, Khai ORCID iD icon 1; Badilita, Vlad 1; Korvink, Jan G. 1
1 Institut für Mikrostrukturtechnik (IMT), Karlsruher Institut für Technologie (KIT)

Abstract:

We introduce an inverse design methodology for a new class of eigenfrequency-invariant metamaterial-resonators, targeting nuclear magnetic resonance detection at ultra-high B0 field, and operating at two specified frequencies selected from within the 100-1500 MHz range. The primary optimisation goal is to maximise the magnetic field intensity and uniformity within a liquid sample, while the electric energy should be kept to a minimum level to reduce dielectric heating or quadrupolar moment excitation effects. Due to the symmetric geometry requirement of the cavity, a demultiplexer is also designed to direct each discrete resonant signal to another predetermined output port of the resonator. In order to reduce the geometrical dependency of the resonance frequency, a bespoke metamaterial is used for the cavity host. Therefore, an additional optimisation problem for a unit cell domain is defined to seek a proper material layout for the host region of the resonators. Given the sensitivity of the frequency domain, the optimisation process is effectively regulated through the utilisation of both a Helmholtz filter and a projection method. It is found that considerable improvements of the resonator quality factor can be obtained through this optimisation process.


Verlagsausgabe §
DOI: 10.5445/IR/1000177030
Veröffentlicht am 06.12.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Mikrostrukturtechnik (IMT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 0177-0667, 1435-5663
KITopen-ID: 1000177030
Erschienen in Engineering with Computers
Verlag Springer
Vorab online veröffentlicht am 19.11.2024
Schlagwörter double-resonant resonators, topology optimisation, ultra-high field NMR, metamaterials, eigenfrequency-invariant detectors, demultiplexer
Nachgewiesen in Scopus
Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page