KIT | KIT-Bibliothek | Impressum | Datenschutz

A conditional deep learning model for super-resolution reconstruction of small-scale turbulent structures in particle-Laden flows

Tofighian, Hesam 1; Denev, Jordan A. ORCID iD icon 2; Kornev, Nikolai
1 Karlsruher Institut für Technologie (KIT)
2 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)

Abstract:

Super-resolution reconstruction of turbulent flows using deep learning has gained significant attention, yet challenges remain in accurately capturing physical small-scale structures. This study introduces the Conditional Enhanced Super-Resolution Generative Adversarial Network (CESRGAN) for reconstructing high-resolution turbulent velocity fields from low-resolution inputs. CESRGAN consists of a conditional discriminator and a conditional generator, the latter being called CoGEN. CoGEN incorporates subgrid-scale (SGS) turbulence kinetic energy as conditional information, improving the recovery of small-scale turbulent structures with the desired level of energy. By being aware of SGS turbulence kinetic energy, CoGEN is relatively insensitive to the degree of detail in the input. As shown in the paper, its advantages become more pronounced when the model is applied to heavily filtered input. We evaluate the model using direct numerical simulation (DNS) data of forced homogeneous isotropic turbulence. The analysis of Q-criterion isosurfaces, energy spectra, and probability density functions shows that the proposed CoGEN reconstructs fine-scale vortical structures more precisely and captures turbulent intermittency better compared to the traditional generator. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000177181
Veröffentlicht am 17.12.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Scientific Computing Center (SCC)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 01.11.2024
Sprache Englisch
Identifikator ISSN: 1070-6631, 1527-2435, 0031-9171, 1089-7666, 2163-4998
KITopen-ID: 1000177181
HGF-Programm 46.21.01 (POF IV, LK 01) Domain-Specific Simulation & SDLs and Research Groups
Erschienen in Physics of Fluids
Verlag American Institute of Physics (AIP)
Band 36
Heft 11
Seiten Art.-Nr.: 115173
Nachgewiesen in Scopus
Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page