KIT | KIT-Bibliothek | Impressum | Datenschutz

Gaussian process regression as a powerful tool for analysing time series in environmental geochemistry

Gil-Díaz, Teba ORCID iD icon 1; Trumm, Michael
1 Institut für Angewandte Geowissenschaften (AGW), Karlsruher Institut für Technologie (KIT)

Abstract:

Monitoring programs require more advanced data management for the registered time series. Classical temporal series decomposition cannot fulfil current needs regarding adequate data representation, optimization of the spatial-temporal sampling resolution and predictive power. In the manuscript at hand, we will demonstrate that Gaussian process regression (GPR) models are a vital machine-learning tool to interpret temporal series, improving understanding of geochemical cycles, providing input data for geochemical models and acting as a guide for future decisions in environmental monitoring. Firstly, we explore the impacts of sampling frequency in the GPR performance for temporal series with variable lengths and sampled frequencies of water discharges. On a second approach, we present the strengths and weaknesses between classical decomposition of temporal series and GPR results for a case study: a 14-year record of water discharge, suspended particulate matter and antimony concentrations in the Garonne River. Our results suggest that (i) even short temporal series with low sampling resolution can be accurately characterized by GPR when presenting well defined seasonal patterns, and (ii) GPR provides more detailed and robust support than classical statistics to identify processes responsible for multi-scale geochemical signals. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000177324
Veröffentlicht am 03.01.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Geowissenschaften (AGW)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2024
Sprache Englisch
Identifikator ISSN: 1574-9541, 1878-0512
KITopen-ID: 1000177324
Erschienen in Ecological Informatics
Verlag Elsevier
Band 84
Seiten Art.-Nr.: 102877
Vorab online veröffentlicht am 08.11.2024
Nachgewiesen in Web of Science
Scopus
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page