KIT | KIT-Bibliothek | Impressum | Datenschutz

Managing AI in Manufacturing Systems - Solving the Data Bottleneck

Youssef, Shahenda ORCID iD icon 1; Pfrommer, Julius 2; Oexle, Florian 3; Hansjosten, Malte 3
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)
2 Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung (IOSB)
3 Institut für Produktionstechnik (WBK), Karlsruher Institut für Technologie (KIT)

Abstract:

The Data Bottleneck refers to the challenge of ensuring the availability of the right data at the right time in AI-driven projects. Early stages often involve uncertainty about when, how, and how much data will be required. The proposed approach focuses on estimating data requirements and determining when the data is needed at each phase of the AI lifecycle. This includes identifying critical data dependencies, ensuring data quality, managing imbalanced datasets, and implementing post-deployment monitoring to adapt to data shifts. By addressing these issues, organizations can enhance fairness, accuracy, and adaptability while sustaining model performance. Effective data bottleneck management empowers organizations to unify their data, improving trust, accessibility, and control. This approach supports key business objectives while enabling the development of reliable, scalable, and adaptable AI systems.


Volltext §
DOI: 10.5445/IR/1000177375
Veröffentlicht am 17.12.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Institut für Produktionstechnik (WBK)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2024
Sprache Englisch
Identifikator KITopen-ID: 1000177375
Bemerkung zur Veröffentlichung It is a white paper
Schlagwörter Data Bottleneck, Data Management, Data Scarcity, Data Preprocessing, Scaling Laws, Continual Learning
Referent/Betreuer Beyerer, Jürgen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page