KIT | KIT-Bibliothek | Impressum | Datenschutz

Advancing Model Explainability in Pervasive Computing

Huang, Yiran ORCID iD icon 1
1 Institut für Telematik (TM), Karlsruher Institut für Technologie (KIT)

Abstract:

Pervasive computing technologies are increasingly integral to numerous domains, necessitating enhanced explainability due to their human-centered design. However, task difficulty and data complexity pose substantial challenges for Explainable Artificial Intelligence (XAI) methodologies. Particularly, the predictive performance of interpretable models is often limited within these domains. Furthermore, the inherent complexities of pervasive computing, characterized by noisy, high-volume, and temporally dependent data, exacerbate the difficulty in developing effective explanatory methods. Prevalent XAI approaches, especially those dependent on saliency maps, typically fail to adequately elucidate the underlying decision-making processes of complex models.
This dissertation aims to advance the field of XAI within pervasive computing by addressing these critical challenges. It is structured around three principal objectives: First, it seeks to improve the predictive performance of interpretable models through the introduction of an innovative automatic feature engineering framework, coupled with an optimization algorithm specifically designed for pervasive environments. ... mehr


Volltext §
DOI: 10.5445/IR/1000177453
Veröffentlicht am 17.12.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Telematik (TM)
Publikationstyp Hochschulschrift
Publikationsdatum 17.12.2024
Sprache Englisch
Identifikator KITopen-ID: 1000177453
Verlag Karlsruher Institut für Technologie (KIT)
Umfang XIX, 200 S.
Art der Arbeit Dissertation
Fakultät Fakultät für Informatik (INFORMATIK)
Institut Institut für Telematik (TM)
Prüfungsdatum 28.11.2024
Schlagwörter Explainable Artificial Intelligence, Pervasive Computing, Optimization Algorithm
Referent/Betreuer Beigl, Michael
Amft, Oliver
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page