KIT | KIT-Bibliothek | Impressum | Datenschutz

Metrics for the evaluation of learned causal graphs based on ground truth

Rehak, Josephine; Falkenstein, Alexander; Doehner, Frank ORCID iD icon 1; Beyerer, Jürgen
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

The self-guided learning of causal relations may contribute to the general maturity of artificial intelligence in the future. To develop such learning algorithms, powerful metrics are required to track advances.
In contrast to learning algorithms, little has been done in regards to developing suitable metrics. In this work, we evaluate current state of the art metrics by inspecting their discovery properties and their considered graphs. We also introduce a new combination of graph notation and metric, which allows for benchmarking given a variety of learned causal graphs. It also allows the use of maximal ancestral graphs as ground truth.


Verlagsausgabe §
DOI: 10.5445/IR/1000177520
Veröffentlicht am 18.12.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Publikationsmonat/-jahr 03.2024
Sprache Englisch
Identifikator KITopen-ID: 1000177520
Erschienen in ML4CPS – Machine Learning for Cyber-Physical Systems, Berlin, March 21st-22nd 2024
Veranstaltung Machine Learning for Cyber-Physical Systems (ML4CPS 2024), Berlin, Deutschland, 21.03.2024 – 22.03.2024
Verlag UB HSU
Schlagwörter Causal graph, Metric, Causal discovery, Ground truth, Bayesian network structure learning, Causal structure learning, Acyclic graph, Ancestral graph
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page