KIT | KIT-Bibliothek | Impressum | Datenschutz

Quantitative Convolutional Neural Network Based Multi-Phase XRD Pattern Analysis

Höfer, Hawo H. 1; Orth, André; Schweidler, Simon ORCID iD icon 2; Breitung, Ben ORCID iD icon 2; Aghassi-Hagmann, Jasmin ORCID iD icon 2; Reischl, Markus ORCID iD icon 1
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)
2 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

X-ray diffraction (XRD) is commonly used to an-alyze phase compositions of crystalline samples. Medical ap-plications include the analysis of biotechnological materialsand gall- and kidney stones, where composition can informpathology assessment. XRD analysis methods like Rietveld re-finement requires expert knowledge, and multi-phase sampleanalysis is especially challenging and time consuming. Large-scale medical and biotechnological experiments can thereforebe hindered by the need to perform analysis tasks using XRD.Here, we present preliminary results on an automated con-volutional neural network (CNN) based method for samplecomposition analysis using XRD patterns. It can aid experts’analysis using initial estimations, and enable basic judgementsfor non-experts. Furthermore, we confirm the intuitive notionthat analysis performance degrades with sample complexitythrough systematic investigation using a synthetic dataset.


Verlagsausgabe §
DOI: 10.5445/IR/1000177528
Veröffentlicht am 18.12.2024
Originalveröffentlichung
DOI: 10.1515/cdbme-2024-2075
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 01.12.2024
Sprache Englisch
Identifikator ISSN: 2364-5504
KITopen-ID: 1000177528
HGF-Programm 43.31.02 (POF IV, LK 01) Devices and Applications
Erschienen in Current Directions in Biomedical Engineering
Verlag De Gruyter
Band 10
Heft 4
Seiten 307–310
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page