KIT | KIT-Bibliothek | Impressum | Datenschutz

ML-Based XPS Quantification Supported by Synthetic Dataset Generation

Orth, André 1; Höfer, Hawo 1; Nefedov, Alexei 2; Jalali, Mehrdad ORCID iD icon 2; Wöll, Christof 2; Reischl, Markus ORCID iD icon 1
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)
2 Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT)

Abstract:

With growing interest in laboratory automation and high-throughput systems, the amount of generated experimental data is rapidly increasing while analysis methods still require many manual work hours from experts. This is prevalent in X-ray photoelectron spectroscopy (XPS), where quantification is a complex, time-consuming, and error-prone task.
We therefore propose a neural network-based workflow to make this process more approachable. As training data avail-
ability ranges from insufficient to non-existent, our workflow creates a synthetic dataset containing XPS signals and corresponding area percentages based on binding energies supplied by the user. As a result, no previous measurements are needed. After training on the synthetic data, the neural network can predict area percentages of the known binding energies with high confidence. This workflow can therefore be adapted for XPS quantification tasks to filter significant data and supervise processes. Moreover, this enables non-experts to analyze spec-
tra and can help experts to reduce focus on important spectra.


Verlagsausgabe §
DOI: 10.5445/IR/1000177530
Veröffentlicht am 18.12.2024
Originalveröffentlichung
DOI: 10.1515/cdbme-2024-2118
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Institut für Funktionelle Grenzflächen (IFG)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 19.12.2024
Sprache Englisch
Identifikator ISSN: 2364-5504
KITopen-ID: 1000177530
HGF-Programm 43.31.02 (POF IV, LK 01) Devices and Applications
Erschienen in Current Directions in Biomedical Engineering
Verlag De Gruyter
Band 10
Heft 4
Seiten 482–485
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page