KIT | KIT-Bibliothek | Impressum | Datenschutz

Data-based optimisation of intra-hospital patient transport capacity planning

Kropp, Tobias ORCID iD icon 1; Gao, Yuhao 2; Lennerts, Kunibert 2
1 Institut für Technologie und Management im Baubetrieb (TMB), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)

Abstract:

Efficient and timely organisational healthcare processes are urgent for patient satisfaction and medical success in hospitals. Despite process analysis and problem identification, there are especially challenges in evaluating and implementing planning alternatives. This is also valid for the planning of resource capacities. There are currently few use cases that offer data-driven, automated solutions and typically significant effort in modeling complex processes and systems is involved. Therefore, we explore the use of a combination of neural networks and metaheuristic algorithms to optimise organisational capacity planning in healthcare. These techniques allow for autonomous learning and optimisation of processes. A Multilayer Perceptron (MLP) is developed in a use case utilising data from approximately 3.5 years of accompanied intra-hospital patient transport in a German hospital in order to be able to make accurate predictions about delayed transports on a day of the week basis. A data preprocessing was performed, aggregating case-wise transportation information into hourly information to serve as input and labelling data for the MLP training. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000177755
Veröffentlicht am 07.01.2025
Originalveröffentlichung
DOI: 10.1007/s00291-024-00795-7
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technologie und Management im Baubetrieb (TMB)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 22.11.2024
Sprache Englisch
Identifikator ISSN: 0171-6468, 1436-6304
KITopen-ID: 1000177755
Erschienen in OR Spectrum
Verlag Springer
Nachgewiesen in Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page