KIT | KIT-Bibliothek | Impressum | Datenschutz

A submodeling approach for efficient prediction of local temperature profiles in component-scale additive manufacturing

Frölich, Felix ORCID iD icon 1; Hof, Lukas ORCID iD icon 1; Zimmerling, Clemens ORCID iD icon 1; Wittemann, Florian ORCID iD icon 1; Kärger, Luise ORCID iD icon 1
1 Institut für Fahrzeugsystemtechnik (FAST), Karlsruher Institut für Technologie (KIT)

Abstract:

To solve the multiscale problem of additive manufacturing of large components by material extrusion (MEX), this work utilizes the methodology of submodeling and shows the necessary modeling steps to apply the methodology to the material extrusion process. The research enables the coupling of high-resolution models and process simulations at the component level. It allows the investigation of local effects such as crystallization effects or the resulting interface strength and its dependence on process variables in critical zones of a component, considering the component geometry as well as global and component-specific process conditions. The principle is verified numerically and validated experimentally, showing good agreement. In addition, different specifications for boundary conditions and submodel sizes are compared and evaluated. Variable time increments are used to apply the submodels with a computational time independent of the component size. In addition, sensitivity analyses provide information on the necessary temporal and spatial discretization of the submodel for the most accurate prediction of the temperature profile.


Verlagsausgabe §
DOI: 10.5445/IR/1000177873
Veröffentlicht am 09.01.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Fahrzeugsystemtechnik (FAST)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 0268-3768, 1433-3015
KITopen-ID: 1000177873
Erschienen in The International Journal of Advanced Manufacturing Technology
Verlag Springer
Vorab online veröffentlicht am 27.12.2024
Schlagwörter Additive Manufacturing, FFF, Process Simulation, FEM, Filament Orientation, Material Anisotropy, Homogenization
Nachgewiesen in Scopus
Dimensions
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page