KIT | KIT-Bibliothek | Impressum | Datenschutz

Phase-field based shape optimization of uni- and multiaxially loaded nature-inspired porous structures while maintaining characteristic properties

Selzer, Michael ORCID iD icon 1; Wallat, Leonie 2; Kersch, Nils 2; Reder, Martin ORCID iD icon 2; Seiler, Marcus; Poehler, Frank 2; Nestler, Britta 1
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)

Abstract:

Triply periodic minimal surfaces (TPMS) are highly versatile porous formations that can be defined by formulas. Computationally based, load-specific shape optimization enables tailoring these structures for their respective application areas and thereby enhance their potential. In this investigation, individual sheet-based gyroid structures with varying porosities are specifically optimized with respect to their stiffness. A modified phase-field method is employed to establish a simulation framework for the shape optimization process. Despite constant volume and the preservation of the periodicity of the unit cells, volume redistribution occurs through displacement of the interfaces. The phase-field-based optimization process is detailed using unidirectional loading on three gyroidal unit cells with porosities of 75 %, 80 %, and 85 %. Subsequently, the gyroidal unit cell with a porosity of 85 % is shape-optimized under multidirectional loading. A subsequent experimental validation of the unidirectionally loaded cells confirms that the shape-optimized structures exhibit, on average, higher stiffness than the non-optimized structures. The highest increase of 40 % in effective modulus is achieved with the gyroid structure having a porosity of 75 %, while maintaining minimal alteration to the surface-to-volume ratio and preserving periodicity. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000177901
Veröffentlicht am 14.01.2025
Originalveröffentlichung
DOI: 10.1007/s44245-024-00065-4
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 2731-6564
KITopen-ID: 1000177901
Erschienen in Discover Mechanical Engineering
Verlag Springer International Publishing
Band 3
Heft 1
Seiten Art.-Nr.: 45
Vorab online veröffentlicht am 14.11.2024
Nachgewiesen in Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page