KIT | KIT-Bibliothek | Impressum | Datenschutz

A Pareto Tail Plot Without Moment Restrictions

Klar, Bernhard ORCID iD icon 1
1 Institut für Stochastik (STOCH), Karlsruher Institut für Technologie (KIT)

Abstract:

We propose a mean functional that exists for arbitrary probability distributions and characterizes the Pareto distribution within the set of distributions with finite left endpoint. This is in sharp contrast to the mean excess plot, which is meaningless for distributions without an existing mean and has nonstandard behavior when the mean is finite, but the second moment does not exist. The construction of the plot is based on the principle of a single huge jump, which differentiates between distributions with moderately heavy and super heavy tails. We present an estimator of the tail function based on U-statistics and study its large sample properties. Several loss datasets illustrate the use of the new plot.


Verlagsausgabe §
DOI: 10.5445/IR/1000177908
Veröffentlicht am 10.01.2025
Originalveröffentlichung
DOI: 10.1080/00031305.2024.2413081
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Stochastik (STOCH)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 0003-1305, 1537-2731
KITopen-ID: 1000177908
Erschienen in The American Statistician
Verlag Taylor and Francis
Seiten 1–11
Vorab online veröffentlicht am 19.11.2024
Schlagwörter Heavy tailsInfinite meanPareto distributionRegularly varying distributionSingle huge jumpTail index
Nachgewiesen in Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page