KIT | KIT-Bibliothek | Impressum | Datenschutz

Schottky-Invariant p-Adic Diffusion Operators

Bradley, Patrick Erik ORCID iD icon 1
1 Institut für Photogrammetrie und Fernerkundung (IPF), Karlsruher Institut für Technologie (KIT)

Abstract:

A parametrised diffusion operator on the regular domain $\Omega$ of a p-adic Schottky group is constructed. It is defined as an integral operator on the complex-valued functions
on $\Omega$ which are invariant under the Schottky group $\Gamma$, where integration is against the measure defined by an invariant regular differential 1-form ω. It is proven that the space of Schottky invariant L$^2$ -functions on $\Omega$ outside the zeros of ω has an orthonormal basis consisting of $\Gamma$-invariant extensions of Kozyrev wavelets which are
eigenfunctions of the operator. The eigenvalues are calculated, and it is shown that
the heat equation for this operator provides a unique solution for its Cauchy problem
with Schottky-invariant continuous initial conditions supported outside the zero set of
ω, and gives rise to a strong Markov process on the corresponding orbit space for the
Schottky group whose paths are càdlàg.


Verlagsausgabe §
DOI: 10.5445/IR/1000178055
Veröffentlicht am 15.01.2025
Originalveröffentlichung
DOI: 10.1007/s00041-024-10139-2
Scopus
Zitationen: 2
Web of Science
Zitationen: 2
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Photogrammetrie und Fernerkundung (IPF)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 02.2025
Sprache Englisch
Identifikator ISSN: 1069-5869, 1531-5851
KITopen-ID: 1000178055
HGF-Programm 12.17.21 (POF IV, LK 01) Membrane materials & processes in water process engineering
Erschienen in Journal of Fourier Analysis and Applications
Verlag Birkhäuser Verlag
Band 31
Heft 1
Seiten 8
Projektinformation 469999674 (DFG, DFG EIN, BR 2128/21-1)
469999674 (DFG, DFG EIN, BR 3513/14-1)
Vorab online veröffentlicht am 14.01.2025
Nachgewiesen in Scopus
OpenAlex
Web of Science
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page