KIT | KIT-Bibliothek | Impressum | Datenschutz

Momentary Depression Severity Prediction in Patients With Acute Depression Who Undergo Sleep Deprivation Therapy: Speech-Based Machine Learning Approach

Hartnagel, Lisa-Marie 1; Emden, Daniel; Foo, Jerome C.; Streit, Fabian; Witt, Stephanie H.; Frank, Josef; Limberger, Matthias F. 1; Schmitz, Sara E. 1; Gilles, Maria; Rietschel, Marcella; Hahn, Tim; Ebner-Priemer, Ulrich W. 1; Sirignano, Lea
1 Institut für Sport und Sportwissenschaft (IfSS), Karlsruher Institut für Technologie (KIT)

Abstract:

Background:
Mobile devices for remote monitoring are inevitable tools to support treatment and patient care, especially in recurrent diseases such as major depressive disorder. The aim of this study was to learn if machine learning (ML) models based on longitudinal speech data are helpful in predicting momentary depression severity. Data analyses were based on a dataset including 30 inpatients during an acute depressive episode receiving sleep deprivation therapy in stationary care, an intervention inducing a rapid change in depressive symptoms in a relatively short period of time. Using an ambulatory assessment approach, we captured speech samples and assessed concomitant depression severity via self-report questionnaire over the course of 3 weeks (before, during, and after therapy). We extracted 89 speech features from the speech samples using the Extended Geneva Minimalistic Acoustic Parameter Set from the Open-Source Speech and Music Interpretation by Large-Space Extraction (audEERING) toolkit and the additional parameter speech rate.

Objective:
We aimed to understand if a multiparameter ML approach would significantly improve the prediction compared to previous statistical analyses, and, in addition, which mechanism for splitting training and test data was most successful, especially focusing on the idea of personalized prediction.
... mehr

Zugehörige Institution(en) am KIT Institut für Sport und Sportwissenschaft (IfSS)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 23.12.2024
Sprache Englisch
Identifikator ISSN: 2368-7959
KITopen-ID: 1000178233
Erschienen in JMIR Mental Health
Verlag JMIR Publications
Band 11
Seiten Art.-Nr.: e64578
Nachgewiesen in Web of Science
Dimensions
OpenAlex
Scopus

Verlagsausgabe §
DOI: 10.5445/IR/1000178233
Veröffentlicht am 20.01.2025
Seitenaufrufe: 32
seit 20.01.2025
Downloads: 17
seit 24.01.2025
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page