KIT | KIT-Bibliothek | Impressum | Datenschutz

Artificial neural networks for random fields to predict the buckling load of geometrically imperfect structures

Schweizer, Maximilian 1; Fina, Marc ORCID iD icon 1; Wagner, Werner 1; Freitag, Steffen 1
1 Institut für Baustatik (IBS), Karlsruher Institut für Technologie (KIT)

Abstract:

The prediction of buckling loads for slender and thin-walled structures under compression loading is important for the structural reliability assessment. The presence of random geometrical imperfections reduces the buckling load and is uncertain. In the framework of a probabilistic buckling analysis, the geometrical imperfections are modeled as correlated random fields and applied on the Finite-Element (FE) model. The buckling analysis is then computed by a Monte Carlo Simulation (MCS). The probabilistic approach in structural engineering demands the assurance of a low probability of failure and thus, high accuracy in the calculation of the probability distribution. The resulting high computational cost of the Monte Carlo Simulation can be reduced with a surrogate model of the FE simulation. The development of an effective surrogate model for random fields is challenging, because of the high dimensional input. In this work, an artificial neural network (ANN) surrogate model is presented, to predict the buckling load of structures considering random fields of geometrical imperfections as input. The training procedure is based on random field and the corresponding buckling load samples obtained from FE simulations. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000179452
Veröffentlicht am 24.02.2025
Originalveröffentlichung
DOI: 10.1007/s00466-024-02595-w
Scopus
Zitationen: 2
Web of Science
Zitationen: 1
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Baustatik (IBS)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 07.2025
Sprache Englisch
Identifikator ISSN: 0178-7675, 1432-0924
KITopen-ID: 1000179452
Erschienen in Computational Mechanics
Verlag Springer
Band 76
Heft 1
Seiten 181–204
Vorab online veröffentlicht am 11.02.2025
Nachgewiesen in Web of Science
Dimensions
OpenAlex
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page