KIT | KIT-Bibliothek | Impressum | Datenschutz

A note on the multicolour version of the Erdős-Hajnal conjecture

Axenovich, Maria 1; Weber, Lea 2
1 Karlsruher Institut für Technologie (KIT)
2 Institut für Algebra und Geometrie (IAG), Karlsruher Institut für Technologie (KIT)

Abstract:

Informally, the multicolour version of the Erdős-Hajnal conjecture (shortly EH-conjecture) asserts that if a sufficiently large host clique on n vertices is edge-coloured avoiding a copy of some fixed edge-coloured clique, then there is a large homogeneous set of size nβ for some positive β, where a set of vertices is homogeneous if it does not induce all the colours. This conjecture, if true, claims that imposing local conditions on edge-partitions of cliques results in a global structural consequence such as a large homogeneous set, a set avoiding all edges of some part. While this conjecture attracted a lot of attention, it is still open even for two colours. In this note, we reduce the multicolour version of the EH-conjecture to the case when the number of colours used in a host clique is either the same as in the forbidden pattern or one more. We exhibit a non-monotonicity behaviour of homogeneous sets in coloured cliques with forbidden patterns by showing that allowing an extra colour in the host graph could actually decrease the size of a largest homogeneous set.

Zugehörige Institution(en) am KIT Institut für Algebra und Geometrie (IAG)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 06.2025
Sprache Englisch
Identifikator ISSN: 0012-365X, 1872-681X
KITopen-ID: 1000179618
Erschienen in Discrete Mathematics
Verlag Elsevier
Band 348
Heft 6
Seiten 114437
Nachgewiesen in Dimensions
OpenAlex
Scopus
Web of Science

Verlagsausgabe §
DOI: 10.5445/IR/1000179618
Veröffentlicht am 27.02.2025
Seitenaufrufe: 20
seit 27.02.2025
Downloads: 12
seit 28.02.2025
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page