KIT | KIT-Bibliothek | Impressum | Datenschutz

On volume and surface area of parallel sets. II. Surface measures and (non)differentiability of the volume

Rataj, Jan; Winter, Steffen ORCID iD icon 1
1 Institut für Stochastik (STOCH), Karlsruher Institut für Technologie (KIT)

Abstract:

We prove that at differentiability points 𝑟$_0$ > 0 of the volume function of a compact set 𝐴 ⊂ ℝ$^𝑑$ (associating to 𝑟 the volume of the 𝑟-parallel set of 𝐴), the surface area measures of 𝑟-parallel sets of 𝐴 converge weakly to the surface area measure of the 𝑟$_0$-parallel set as 𝑟 → 𝑟$_0$. We further study the question which sets of parallel radii can occur as sets of nondifferentiability points of the volume function of some compact set. We provide a full characterization for dimensions 𝑑 = 1 and 2.


Verlagsausgabe §
DOI: 10.5445/IR/1000179621
Veröffentlicht am 28.02.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Stochastik (STOCH)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 03.2025
Sprache Englisch
Identifikator ISSN: 0024-6093, 1469-2120
KITopen-ID: 1000179621
Erschienen in Bulletin of the London Mathematical Society
Verlag John Wiley and Sons
Band 57
Heft 3
Seiten 895–912
Vorab online veröffentlicht am 05.02.2025
Nachgewiesen in Dimensions
Web of Science
OpenAlex
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page