KIT | KIT-Bibliothek | Impressum | Datenschutz

Blind Channel Estimation and Joint Symbol Detection with Data-Driven Factor Graphs

Schmid, Luca 1; Raviv, Tomer; Shlezinger, Nir; Schmalen, Laurent 1
1 Communications Engineering Lab (CEL), Karlsruher Institut für Technologie (KIT)

Abstract:

We investigate the application of the factor graph
framework for blind joint channel estimation and symbol detec-
tion on time-variant linear inter-symbol interference channels.
In particular, we consider the expectation maximization (EM)
algorithm for maximum likelihood estimation, which typically
suffers from high complexity as it requires the computation of the
symbol-wise posterior distributions in every iteration. We address
this issue by efficiently approximating the posteriors using the
belief propagation (BP) algorithm on a suitable factor graph. By
interweaving the iterations of BP and EM, the detection complex-
ity can be further reduced to a single BP iteration per EM step. In
addition, we propose a data-driven version of our algorithm that
introduces momentum in the BP updates and learns a suitable
EM parameter update schedule, thereby significantly improving
the performance-complexity tradeoff with a few offline training
samples. Our numerical experiments demonstrate the excellent
performance of the proposed blind detector and show that it
even outperforms coherent BP detection in high signal-to-noise
scenarios.

Zugehörige Institution(en) am KIT Communications Engineering Lab (CEL)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 0090-6778, 1558-0857
KITopen-ID: 1000179937
Erschienen in IEEE Transactions on Communications
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 1
Vorab online veröffentlicht am 11.02.2025
Nachgewiesen in OpenAlex
Dimensions
Scopus

Preprint §
DOI: 10.5445/IR/1000179937
Veröffentlicht am 14.03.2025
Seitenaufrufe: 2
seit 14.03.2025
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page