KIT | KIT-Bibliothek | Impressum | Datenschutz

Partial correlation graphs for continuous-parameter time series

Fasen-Hartmann, Vicky 1; Schenk, Lea ORCID iD icon 1
1 Institut für Stochastik (STOCH), Karlsruher Institut für Technologie (KIT)

Abstract:

In this paper, we establish the partial correlation graph for multivariate continuous-time stochastic processes, assuming only that the underlying process is stationary and mean-square continuous with expectation zero and spectral density function. In the partial correlation graph, the vertices are the components of the process and the undirected edges represent partial correlations between the vertices. To define this graph, we therefore first introduce the partial correlation relation for continuous-time processes and provide several equivalent characterisations. In particular, we establish that the partial correlation relation defines a graphoid. The partial correlation graph additionally satisfies the usual Markov properties and the edges can be determined very easily via the inverse of the spectral density function. Throughout the paper we compare and relate the partial correlation graph to the mixed (local) orthogonality graph of Fasen-Hartmann and Schenk (Stoch Process Appl 179:104501, 2024. https://doi.org/10.1016/j.spa.2024.104501). Finally, as an example, we explicitly characterise and interpret the edges in the partial correlation graph for the popular multivariate continuous-time AR (MCAR) processes.

Zugehörige Institution(en) am KIT Institut für Stochastik (STOCH)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 0026-1335, 1435-926X
KITopen-ID: 1000180165
Erschienen in Metrika
Verlag Springer
Vorab online veröffentlicht am 11.03.2025
Nachgewiesen in Dimensions
Web of Science
Scopus
OpenAlex

Verlagsausgabe §
DOI: 10.5445/IR/1000180165
Veröffentlicht am 18.03.2025
Seitenaufrufe: 16
seit 18.03.2025
Downloads: 14
seit 19.03.2025
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page