KIT | KIT-Bibliothek | Impressum | Datenschutz

Responsible and Sustainable AI: Considering Energy Consumption in Automated Text Classification Evaluation Tasks

Kaplan, Angelika 1; Keim, Jan ORCID iD icon 1; Greiner, Lukas; Sieger, Ralf 2; Mirandola, Raffaela 1; Reussner, Ralf 1
1 Institut für Informationssicherheit und Verlässlichkeit (KASTEL), Karlsruher Institut für Technologie (KIT)
2 FZI Forschungszentrum Informatik (FZI)

Abstract (englisch):

Text classification is one of the typical and fundamental natural language processing tasks. With the advent of large language models (LLMs), text classification has evolved much further. Based on the growing sizes of LLMs and the increased demands for hardware, and especially energy, questions about sustainability and environmental impacts and responsibility also arise. To assess text classification approaches, researchers usually only use common performance metrics like precision, recall, and f1-score. Green AI, i.e., improving environmental aspects while maintaining performance, is regularly disregarded and not a standard in the evaluation of automated text classification approaches. Yet, minor performance improvements might not justify, e.g., much higher energy consumption. In this paper, we aim to raise awareness for this issue and the corresponding trade-off discussions and decisions. Therefore, we present novel sustainability metrics and provide guidelines for text classification approaches that are suitable for Green AI. In a text classification use case, we showcase the applicability of our proposed metrics and discuss corresponding trade-off decisions.

Zugehörige Institution(en) am KIT Institut für Informationssicherheit und Verlässlichkeit (KASTEL)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2025
Sprache Englisch
Identifikator ISBN: 979-8-3315-0569-1
ISSN: 1558-1225
KITopen-ID: 1000180194
HGF-Programm 46.23.01 (POF IV, LK 01) Methods for Engineering Secure Systems
Erschienen in Proceedings of the 2025 {IEEE/ACM} 47th International Conference on Software Engineering: Companion Proceedings, {ICSE} Companion 2025, Ottawa, 27th April - 3rd May 2025
Veranstaltung International Conference on Software Engineering (ICSE 2025), Ottawa, Kanada, 27.04.2025 – 03.05.2025
Bemerkung zur Veröffentlichung in press
Schlagwörter Green AI, sustainability metrics, energy consumption, natural language processing, text classification

Postprint §
DOI: 10.5445/IR/1000180194
Veröffentlicht am 19.03.2025
Seitenaufrufe: 20
seit 19.03.2025
Downloads: 10
seit 19.03.2025
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page