KIT | KIT-Bibliothek | Impressum | Datenschutz

Responsible and Sustainable AI: Considering Energy Consumption in Automated Text Classification Evaluation Tasks

Kaplan, Angelika 1; Keim, Jan ORCID iD icon 1; Greiner, Lukas; Sieger, Ralf 2; Mirandola, Raffaela 1; Reussner, Ralf 1
1 Institut für Informationssicherheit und Verlässlichkeit (KASTEL), Karlsruher Institut für Technologie (KIT)
2 FZI Forschungszentrum Informatik (FZI)

Abstract (englisch):

Text classification is one of the typical and fundamental natural language processing tasks. With the advent of large language models (LLMs), text classification has evolved much further. Based on the growing sizes of LLMs and the increased demands for hardware, and especially energy, questions about sustainability and environmental impacts and responsibility also arise. To assess text classification approaches, researchers usually only use common performance metrics like precision, recall, and f1-score. Green AI, i.e., improving environmental aspects while maintaining performance, is regularly disregarded and not a standard in the evaluation of automated text classification approaches. Yet, minor performance improvements might not justify, e.g., much higher energy consumption. In this paper, we aim to raise awareness for this issue and the corresponding trade-off discussions and decisions. Therefore, we present novel sustainability metrics and provide guidelines for text classification approaches that are suitable for Green AI. In a text classification use case, we showcase the applicability of our proposed metrics and discuss corresponding trade-off decisions.


Postprint §
DOI: 10.5445/IR/1000180194
Veröffentlicht am 19.03.2025
Originalveröffentlichung
DOI: 10.1109/GREENS66463.2025.00016
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Informationssicherheit und Verlässlichkeit (KASTEL)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2025
Sprache Englisch
Identifikator ISBN: 979-8-3315-3816-3
ISSN: 1558-1225
KITopen-ID: 1000180194
HGF-Programm 46.23.01 (POF IV, LK 01) Methods for Engineering Secure Systems
Erschienen in 2025 IEEE/ACM 9th International Workshop on Green and Sustainable Software (GREENS)
Veranstaltung 9th International Workshop on Green and Sustainable Software (GREENS 2025), Ottawa, Kanada, 29.04.2025
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 76-83
Schlagwörter Green AI, sustainability metrics, energy consumption, natural language processing, text classification
Nachgewiesen in OpenAlex
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere Energie
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page