KIT | KIT-Bibliothek | Impressum | Datenschutz

vMF-Contact: Uncertainty-aware Evidential Learning for Probabilistic Contact-grasp in Noisy Clutter

Shi, Yitian 1; Welte, Edgar 1; Gilles, Maximilian 1; Rayyes, Rania 1
1 Institut für Fördertechnik und Logistiksysteme (IFL), Karlsruher Institut für Technologie (KIT)

Abstract:

Grasp learning in noisy environments, such as occlusions, sensor noise, and out-of-distribution (OOD) objects, poses significant challenges. Recent learning-based approaches focus primarily on capturing aleatoric uncertainty from inherent data noise. The epistemic uncertainty, which represents the OOD recognition, is often addressed by ensembles with multiple forward paths, limiting real-time application. In this paper, we propose an uncertainty-aware approach for 6-DoF grasp detection using evidential learning to comprehensively capture both uncertainties in real-world robotic grasping. As a key contribution, we introduce vMF-Contact, a novel architecture for learning hierarchical contact grasp representations with probabilistic modeling of directional uncertainty as von Mises-Fisher (vMF) distribution. To achieve this, we analyze the theoretical formulation of the second-order objective on the posterior parametrization, providing formal guarantees for the model's ability to quantify uncertainty and improve grasp prediction performance. Moreover, we enhance feature expressiveness by applying partial point reconstructions as an auxiliary task, improving the comprehension of uncertainty quantification as well as the generalization to unseen objects. ... mehr

Zugehörige Institution(en) am KIT Institut für Fördertechnik und Logistiksysteme (IFL)
Publikationstyp Forschungsbericht/Preprint
Publikationsdatum 03.11.2024
Sprache Englisch
Identifikator KITopen-ID: 1000180556
Verlag arxiv
Umfang 7 S.
Bemerkung zur Veröffentlichung Accepted to "IEEE International Conference on Robotics and Automation (ICRA 2025), Atlanta, GA, May 19-23, 2025"
Schlagwörter Robotics (cs.RO)
Nachgewiesen in OpenAlex
arXiv
Dimensions

Volltext §
DOI: 10.5445/IR/1000180556
Veröffentlicht am 31.03.2025
Seitenaufrufe: 35
seit 31.03.2025
Downloads: 10
seit 31.03.2025
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page